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Chapter 6  
   

MIXED INTEGER LINEAR PROGRAMMING 
Introduction 
 
 There are linear programming problems that require integer values for some or all the 
decision variables. For example, integer quantities are necessary for activities associated with 
machines, vehicles or people. These problems with some of the variables having integer values are 
known as Mixed Integer Linear Programming (MILP) problems. The use of integer variables 
makes possible the formulation of models of many problems for which only an approximation was 
available previously.  Industrial applications of mixed integer programming include: flowsheeting 
optimization, optimal scheduling of batch plants, heat and mass exchanger networks, multiphase 
chemical equilibrium, blending in limited tanks, optimal feed location in distillation and reaction 
path synthesis.  Others include capital budgeting, most valuable mix and equipment scheduling. 
 
 In this chapter, the mathematical representation of a mixed integer linear programming is 
given to describe the mathematical structure of such problems. This is followed by an algorithm 
to solve problems involving MILP, and its use is illustrated by solving a simple problem. A few 
examples illustrating special cases of MILP are given also and explained in detail. Also, standard 
computer codes are described for solving large MILP's. Finally, the important application of 
optimal scheduling for a multi-product batch plant will be given, and this will include converting 
this scheduling problem into a mixed integer mathematical model that is then solved using GAMS, 
the General Algebraic Modeling System for optimization. The computer codes needed for 
representing the problem as well as the output solution are detailed.  
 
General Statement of Mixed Integer Linear Programming (MILP) 
 
 MILP problems require maximizing or minimizing a function subject to linear equality or 
inequality constraints with integer restrictions on some or all the variables. The mathematical 
statement of mixed integer linear programming can be expressed as: 
 
 (MILP)  max {cx + hy: A  + G  ≤ b,  x ∈ Rp+, y ∈ Zn+, } (6-1) 
 
where Zn is a set of n dimensional vector of positive integers and Rp is a set of p-dimensional 
positive real vectors. The variables or unknowns are x = (x1, . . ., xn) and y = (y1, . . ., yp). A and G 
are m × n and m × p matrices respectively. The objective function is z = cx + hy with c and h being 
n and p ordered vectors respectively [1]. 
 
 The MILP has two special cases: Linear Programming (LP) that has all continuous 
variables and Integer Programming (IP) that has only integer variables. The mathematical 
statement of an integer linear programming problem is the same as the linear programming model, 
but with an additional restriction that the variables must take on integer values. It is expressed in 
the following form in summation notation: 
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      p 
 minimize :  z = Σ hjyj        (6-2a) 
                j=1 
           p 
 subject to:   Σ gijyj  <  bi  for i = 1,2, ..., m         (6-2b) 
         j=1 
    yj    ≥ 0, for j = 1, 2, ..., p  
 
    yj    integer, for j = 1, 2, ...., p 
 
In matrix notation, after Equation 6-1, Equations 6-2a and 6-2b for IP are expressed as: 
 
 (IP) max {hy: G  ≤  b, y ∈ Zn+}  (6-3) 
 
The mathematical statement of linear programming problem after Equation (1) is: 
 
 (LP)   max {cx: A  ≤  b, x ∈ Rp+}                (6-4) 
         
 As mentioned above, LP is considered to be a special case of MILP in which the variables 
have no integer restrictions and can assume any positive real value. The deletion of the integer 
restriction in a mixed integer problem reduces it to an ordinary linear program in which all the 
variables are continuous, and this is used in algorithms to solve MILP's. 
 
 Integer programming (IP) has a special case that is used in applications involving a number 
of interrelated "yes-or-no decisions". When integer problems are restricted to values of zero and 
one, this is the special case of general integer programming called Binary Integer Programming 
(BIP).  An example of such a model is the capital budgeting problem in which n projects are 
competing for limited resources such as equipment, manpower and money. The objective is to 
schedule projects to yield the largest profit while satisfying the specified limitations. Here, yj can 
be defined as a binary variable representing the j-th project so that yj = 1 (or 0) if the j-th project 
is scheduled (not scheduled). This problem is described by Ecker and Kupferschmidt [2] and 
Ravindran, et.al. [3]. 
 
 Another example is the knapsack problem where the most valuable mix is determined 
from among n items to be packed in a knapsack, providing that the total amount of volume of the 
selected items does not exceed the capacity of the knapsack. Here too, yj = 1 or 0 depending on 
whether or not item j is selected. This problem is described by Ecker and Kupferschmidt [2]. 
 
 The mathematical statement of a binary integer-programming problem is the same as an 
integer programming statement with the additional restriction that all the variables are binary 
variables. It is expressed in the following form in the summation notation: 
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      n 
 minimize :  z = Σ hjyj         
                j=1 
               p 
 subject to:       Σ gijyj  <  bi  for i = 1,2, ..., m         (6-5) 
              j=1 
     
                yj   = 0 or 1, for j = 1,2, ..., p  
 
 
Perspective on Solving Integer Programming Problems 
 
 The two primary determinants of computational difficulty for an IP problem are the number 
of integer variables and the structure of the problem. This situation is in contrast to linear 
programming, where the number of (functional) constraints is much more important than the 
number of variables. In integer programming, the importance of constraints is secondary to the 
other two factors. For MILP problems, it is the number of integer variables that is important, 
because the computational time increases tremendously as the number of integer variable 
increases. 
 
 Integer programming problems frequently have some special structure that can be exploited 
to simplify and solve very large problems successfully. Special purpose algorithms designed 
specifically to exploit certain kinds of special structures are becoming increasingly important in 
integer programming.  
 
 There are three generally used methods for solving integer-programming problems: LP-
relaxation, cutting plane and branch and bound. The first one is a simple approximate method and 
the third one is considered the best of the three. In LP-relaxation the linear programming problem 
is solved ignoring the integer restriction, and then the noninteger values in the resulting solution 
are rounded-off to integer values. Sometimes, sequences of LP-relaxations for portions of an IP 
problem are used to solve the overall IP problem effectively. Although this is often adequate, this 
approach is not always accurate. One of the drawbacks is that the optimal linear programming 
solution may not necessarily remain feasible after it is rounded-off. Even if the optimal linear 
programming solution is rounded off successfully, there is no guarantee that this rounded-off 
solution will be the optimal integer solution. Moreover, for large problems, such a procedure can 
become computationally expensive. For example, if the optimal LP solution is x1 = 3.2 and x2 = 
4.6, then there are four different combinations of integer values to x1 and x2 that are close to their 
continuous values. (3, 4), (3, 5), (4, 4), and (4, 5). If the feasible solutions are selected from these 
four, then the one that gives the smallest value of the objective function (if minimizing) will be an 
approximate integer solution. For 10 integer variables, this gives 210 = 1024 combinations of 
integer solutions that will have to be evaluated according to Ravindran, et.al. [3]. Then, after 
performing these evaluations, there is no guarantee that an optimal integer solution has been found. 
 
 The cutting plane algorithm solves a sequence of successively tighter LP relaxation 
problems, hoping to produce an optimal integer solution. Details are given by Nemhauser, et.al. 
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[1]. The algorithm eliminates parts of the feasible region that do not contain feasible integer 
solutions. However, it is not unusual to have a very large number of cuts required for convergence. 
 
 The most widely used method for solving both integer and mixed integer programming 
problems is the branch-and-bound algorithm. Most commercial computer codes for solving 
integer-programming problems use this approach [3,4]. The method performs an efficient 
enumeration of a small fraction of the possible feasible integer solutions to locate the optimum. In 
the next section, the branch and bound technique is described in detail for IP, and it is extended 
for the important special case of BIP and the more general case of MILP. 
 
The Branch and Bound Technique  
 
 A bounded integer-programming problem has a finite number of feasible solutions, and it 
is natural to consider using an enumeration procedure for finding an optimal solution. 
Unfortunately, this finite number can be, and usually is, very large; and exhaustive enumeration 
has been found to be prohibitively time consuming for such problems [2]. Therefore, it is 
imperative that an enumeration procedure be structured so that only a small fraction of the feasible 
solutions are examined. 
 
 The basic idea of the branch-and-bound technique is to divide and conquer. If the original 
problem is very large, then it would be difficult to solve it directly; and hence it is divided into 
smaller and smaller subproblems until these subproblems can be solved easily or conquered. To 
divide (branch) the original problem into smaller subproblems, the entire set of feasible solutions 
is partitioned into smaller and smaller subsets; and for each one, an upper bound for the value of 
the objective function is obtained from the solutions within that subset (when maximizing). The 
conquering (fathoming) is done in two parts. Firstly, the bounds for the best solution in the subset 
are found; and then the subset is discarded if its bound indicate that it cannot possibly contain an 
optimal solution for the original problem [5]. The subset with the highest upper bound is 
partitioned further into subsets. Their upper bounds are obtained in turn and used as before to 
exclude some of these subsets from further consideration. From all the remaining subsets, another 
one is selected for further partitioning and so forth. This process is repeated until a feasible solution 
is located such that the corresponding value of the objective function is greater than the upper 
bound for any of the other subsets. Such a feasible solution must be optimal since none of the 
subsets can contain a better solution. 
 
A Branch-and-Bound Algorithm for General Integer Programs 
 
 This algorithm has four stages as described below after Ecker and Kupferschmid [2]. First, 
the original problem is solved with LP relaxation (Step 0. Initialize). Then the first step involves 
partitioning the original set (problem) into two subsets (subproblems) by adding additional 
constraints (Step 1. Branch). Objective function values from the newly partitioned subsets are 
obtained in the second step by solving the LP's for the subsets (Step 2. Bound). In the third step, 
all of the subsets that cannot contain the optimal solution are designated for no further evaluation. 
This is called fathoming (Step 3. Fathom). The fourth step tests if there are any more subsets to be 
fathomed; and if there are, the algorithm is invoked again (Step 4. Test). These steps are described 
in detail as follows for maximizing the objective function of the integer programming problem: 
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Step 0. Initialize. (Locate upper and lower bounds) 
 
Solve the original problem by linear programming relaxation. If all the constraints are satisfied by 
the solution, then the optimal integer solution for the problem has been found.  
 
The linear programming relaxation solution provides an upper bound, zU, to the problem because 
the optimal integer solution cannot have an objective function value larger than the linear 
programming relaxation solution. The imposition of integer restriction on x can only make the 
solution worse. 
 
If an integer solution has not been found, then a lower bound zL for the optimal objective function 
value is found that is equal to the objective value at some point that is feasible for the integer 
program. This could be where all of the variables are zero or some comparable solution that 
satisfies all the constraints and that will surely be smaller than the final optimal value.  
 
If no such feasible point is readily known, set zL = -∞. This lower bound solution is also designated 
as the incumbent solution. This means that it is the best integer solution obtained so far. When a 
better integer feasible point is obtained as the solution proceeds, then that would be the new 
incumbent solution. 
 
Step 1. Branch. (Partition problem into two subsets) 
 
Select a noninteger basis variable from the LP solution to the problem (initially, the LP relaxation 
solution) and partition the set into two subsets. A subset is obtained from a set by introducing an 
additional constraint to the set (branching). The additional constraint depends on the noninteger 
basis variable that is selected for branching.  
 
If there are more than one noninteger basis variables in the solution, then any one of them can be 
selected for branching, and the solution may move more rapidly by selecting the variable with the 
largest fractional value [3].  
 
Thus, branching is accomplished by adding constraints to the LP problem to exclude the noninteger 
values of the chosen basis variable. For example, if the output solution has the values x = [0, 2.5, 
3], then this set is partitioned further into two subsets by adding an additional constraint to exclude 
the noninteger value of the variable. (In this case, x2). The additional constraints for the two subsets 
would be x2 ≤ 2 and x2 ≥ 3 respectively. 
 
Step 2. Bound. (Solve LP's from subsets) 
 
Solve the two new linear programs that are obtained by appending the extra constraint as a result 
of Step 1, to the original programming relaxation. These are designated as subsets, and their 
resulting optimal values (if they are not infeasible) would be the upper bound zU for that branch 
when the subset is developed because additional integer constraints are added in expanding 
branches. 
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Step 3. Fathom. (Test of the LP objective function values for the subsets to determine if no 
further evaluation) 
 
Examine the subsets that contain the optimal points, and fathom a subset if: 
 
(a) zU ≤ zL, i.e. subset objective function value is less than the lower bound, and no further      
evaluations are needed. 
 
(b) The subset has no feasible points, and no further evaluations are needed. 
 
(c) If zU is an integer feasible solution and  zU > zL, then this is the new incumbent solution,      
since it is the best integer solution obtained thus far. 
 
Step 4. Test. (Determine remaining subsets to be evaluated) 
 
Select a subset among those from Step 1 that has noninteger values for branching. If all subsets 
have been fathomed, the incumbent solution is optimal for IP. Otherwise, return to Step 1. 
 
 If the objective is to minimize rather than maximize the objective function, the procedure 
is unchanged except that the roles of the upper and lower bounds are reversed. Thus zL would be 
replaced by zU and vice versa, ∞ becomes -∞, and the directions of the inequalities in the branch 
and bound algorithm would be reversed. 
 
 To apply the branch and bound algorithm, rules are needed to determine the selection of 
variables for branching and the order to follow the branches along with determining the lower 
bounds on the objective function value. The two most popular branch rules are the best-bound rule 
and the newest bound rule.  
 
 The best-bound rule selects the subset having the most favorable bound (the largest upper 
bound in the case of maximization) because this subset would seem to be the most promising one 
to contain an optimal solution.  
 
 The newest bound rule selects the most recently created subset that has not been fathomed 
for further branching. A tie between subsets created at the same time is broken by taking the one 
with the most favorable bound.  
 
 Also, branches can be developed by the breadth first rule and the depth first rule. The 
breadth first rule has the subsets generated at the current depth of the branching evaluated before 
moving further down. The depth first rule has the subsets generated in the center, expanded down 
as far as possible before evaluating subsets on the left or right. In the next section this method is 
illustrated by solving a simple integer programming problem and a binary integer-programming 
problem. 
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A Branch-and-Bound Example for Integer Programming 
 
 The branch-and-bound algorithm is illustrated in solving the following integer 
programming example problem after Ecker and Kupferschmid [2]. 
 
  IP: maximize: z(x) =  -3x1 + 7x2 + 12x3        (6-6a) 
        subject to:            -3x1 + 6x2  +  8x3  ≤ 12 
           6x1 −  3x2  +  7x3  ≤ 8    
     -6x1 + 3x2  +  3x3  ≤ 5 
     x1, x2, x3, nonnegative integers    (6-6b) 
 
 The above can be represented as {maximize z(x), subject to Ax ≤ b, x ∈ F} where F is the 

set of all nonnegative vectors x ∈ R3 such that all three linear inequality constraints are satisfied. 
The following gives the steps in solving this problem by the branch and bound algorithm that was 
described previously. 
 
Step 0 Initialize. 
 
The simplex method is used to solve the linear programming problem without the requirement that 
the xj's be integer. This is called linear programming relaxation and is designated LP-1. The result 
is: 
    x = [0, 0.30, 1.3]T,  z = 17.4 
 
This solution has noninteger components, and thus it is not optimal for IP. However, the optimal 
integer solution can not have an objective function larger than 17.4, since the imposition of integer 
restrictions on x can only make the LP solution worse, i.e. the optimal solution can not be improved 
by adding constraints. Thus, the upper bound, zU, for this set is 17.4.  
 
To establish a lower bound on the objective function value we note that x = 0 is feasible for IP and 
yields an objective value of z(x) = 0. Thus, the maximum value of IP is surely larger than zL = 0, 
because we can do that well by selecting x = 0.  
 
We could use zL = -∞ instead, and the algorithm would still work. However, the way zL is employed 
in the bounding step, it is sometimes faster and convenient to start with a tighter lower bound of 
zL = 0. We use this value and declare x = [0, 0, 0]T to be the incumbent solution which means that 
x = [0, 0, 0] T is the best feasible solution obtained.  
 
As we proceed, the incumbent solution is reset to any feasible solution that has a better (greater in 
case of maximization) value than the previous incumbent solution (if any); and at the end of the 
procedure, the current incumbent solution is declared to be the optimal value for the original 
problem. 
 
Step 1. Branch. 
 



 

 269 

According to the algorithm statement, either x2 or x3 can be chosen as the variable on which to 
branch, and the algorithm gives procedures for this selection. Using x2, LP-1 is partitioned into 
two linear programs having additional constraints x2 ≤ 0 and x2 ≥ 1, because x2 must be integer. 
The optimal solution to IP must be in: 
 
         either F ∩ {x∣ x2 ≤ 0}      or      F ∩ {x∣ x2 ≥ 1} 
 
The variable x2 is constrained to be nonnegative, and every point in the left-hand subset has x2 = 
0. This creates the following two new linear programming problems that are solved in step 2. 
 
 LP-2 max:  -3x1 +7x2 +12x3 LP-3 max:  -3x1 +7x2 +12x3        (6-7a) 
 
 subject to:  -3x1 +6x2 +8x3 ≤ 12 subject to:  -3x1 +6x2 +8x3 ≤ 12 
   6x1 −3x2 +7x3 ≤ 8    6x1 −3x2 +7x3 ≤ 8        (6-7b) 
         -6x1 +3x2 +3x3 ≤ 5          -6x1 +3x2 +3x3 ≤ 5      
         x2 ≤ 0 new constraint           x2 ≥ 1 new constraint 
Step 2. Bound. 
 
The two linear programming problems obtained by adding the extra constraints to the original 
linear programming relaxation are solved, and the results are given below. These solutions 
establish a new upper bound on the IP objective function from each of the subsets produced by the 
branch. 
  maximize z(x)     maximize z(x) 
       x ∈ F       x ∈ F 
     Ax ≤ b        Ax ≤ b 
     subject to x2 = 0    subject to x2 ≥ 1 
    
   x = [0, 0, 1.1]      x = [0.7, 1, 1] 
       z = 13.7        z = 17   
       
Step 3. Fathom. 
 
A subset requires no further evaluation (fathomed) if it satisfies any of the three conditions given 
in step 3 of the algorithm. Checking the node conditions in step 2, neither of the solution contains 
integer optimal solutions, and both preceding subsets must be included in further consideration: 
 
 13.7 is greater than zL = 0 
 17    is greater than zL = 0         ⇒  cannot fathom by (a) 
 neither subproblem is infeasible   ⇒  cannot fathom by (b) 
 neither subproblem has an integer    
 solution that is greater than zL = 0   ⇒  cannot fathom by (c)  
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Step 4. Test. 
 
Both subsets remain unfathomed, so step 1 of the algorithm is repeated. The iteration continues 
until no subsets remain to be fathomed. 
 
An iteration through the algorithm is one application of steps 1 through 4, and many such iterations 
may be performed before the optimal solution is found. The result of the first iteration is shown in 
Figure 6-1 in a branching diagram. It is often convenient and helpful to keep track of the solution 
process by drawing such a diagram. Here, the subproblems are drawn as nodes of a binary tree, 
and they are connected by links that show how the branching was performed. For this reason, the 
subproblems are also referred to as nodes.  
 

 
 
 
From Figure 6-1, we see that the first iteration of the problem yields two unfathomed nodes. Since 
both nodes have to be fathomed, one of the nodes is chosen to begin the second iteration. Selecting 
the left node, the subproblem has the LP solution x = [0, 0, 1.1], and so x3 is chosen as the variable 
on which to branch.  
 
Two additional constraints are introduced to exclude a noninteger value of x3 i.e., x3 ≥ 2 and x3 ≤ 
1. These inequalities are used to form the new left and right subproblems as shown at the bottom 
of Figure 6-2. One of the two new nodes in Figure 9-2 is fathomed because it is infeasible. As 
mentioned before, a node is fathomed for an infeasible subproblem because it means that there are 

 
START zL = 0 

│ 
max z(x) 
Ax ≤ b 
x ∈ F 

x = [0, 0.3, 1.3] 
z = 17.4 

Iteration 1 
│ 

┌──────────────────────┐ 
max z(x)   max z(x) 
Ax ≤ b    Ax ≤ b 
x ∈ F         x ∈ F 
x2 = 0         x2 ≥ 1 

x = [0.7, 1, 1] 
z = 17       x = [0,0,1.1] 

z = 13.7 
 

Figure 6-1 Branching Diagram through Iteration 1 
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no points that satisfy both the original constraints and those added in branching. As the constraint 
set is empty, it cannot contain the optimal point for IP. This subset of F is therefore excluded from 
further consideration by condition (b) of the step 3 in the algorithm statement, and the same has 
been noted in the branching diagram. 
 

 
 
 
The solution for other new subproblem at iteration 2 (Figure 6-2) is an integer solution, x = [0, 0, 
1].  Also, z = 12 > zL = 0, so it is fathomed by condition (c). The maximum value for this branch 
is obtained at the integer solution [0, 0, 1], which means that there are no integer solutions in on 
this branch having an objective value higher than z = 12.  Thus, it is not necessary to consider this 

START zL = 0 
max z(x) 
Ax ≤ b 
x ∈ F 

x = [0, 0.3, 1.3] 
z = 17.4 

Iteration 1 
│  

┌──────────────────────┐ 
max z(x)    max z(x) 
Ax ≤ b          Ax ≤ b 
x ∈ F        x ∈ F 
x2 = 0     x2 ≥ 1 

x =[0.7, 1, 1] 
z =17    x = [0, 0, 1.1] 

z =13.4 
Iteration 2 

│  
┌──────────┐ 

max z(x)                 max z(x) 
Ax ≤ b                   Ax ≤ b 

x ∈ F        x ∈ F 
x2 = 0, x3 ≥ 2           x2 ≤ 0, x3 ≤ 1 

x =[0, 0, 1] 
z =12 

Infeasible 
Fathomed(b)   Fathomed(c) 

zL =  12 
 

Figure 6-2 Branching Diagram through Iteration 2 
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branch further.  If it turns out that this subset contains the optimal point for the integer program, 
then it must be the point x = [0, 0, 1]. 
 
An integer point has been found with an objective function value of more than the current lower 
bound of zL = 0.  The existing lower bound is updated to zL = 12 and x = [0, 0, 1] is declared to be 
the new incumbent solution. At this stage, one can be sure that the maximum value of the integer 
program cannot be smaller than z = 12 because x = [0, 0, 1] is feasible and it yields an integer 
objective function value of z = 12. 
 
Now that the lower bound value has been changed, it is necessary to evaluate the nodes from the 
other branch.  When the remaining nodes are fathomed, the present incumbent solution is 
compared to these results.  Since the other node has z =  17  >  zL = 12, branching is continued.  
 
In Figure 6-3 the third iteration is shown that begins with a branching on x1 from the unfathomed 
node on the right. This yields two nodes, and one is an infeasible subproblem without a solution 
that satisfies the original problem with the additional constraints. This node is fathomed by 
condition (b). The other node is feasible with a non-integer optimal point, and it cannot be 
fathomed because it has z = 16.8 > zL = 12, so further branching is required.  
 
The remaining sub problem solution has two variables, x2 and x3, with noninteger values, and so 
branching can be done on either of those variables. Selecting x3, because it has the largest fractional 
value, the solution process is continued; and the results are shown in Figure 6-4. 
 
In iteration 4, the right subproblem is fathomed, as it is infeasible. The other new subproblem 
having a noninteger solution cannot be fathomed because it has z = 15.6 > zL = 12. Another iteration 
is required, using either x1 or x2. Selecting x2, the procedure is continued, and the results are shown 
in Figure 6-5 for the entire problem. 
 
In iteration 5, the solution of these two subproblems shows that one of them is infeasible and the 
other has z = 15 at the integer point x = [2, 3, 0]. Therefore, both nodes are fathomed, and no further 
branching is required. Also, z = 15 > zL = 12, so the lower bound is updated to zL = 15 and x = [2, 
3, 0] is the new incumbent solution. Applying the convergence test of the algorithm (step 4), the 
algorithm stops because no unfathomed subsets remain. Therefore, the incumbent solution x = [2, 
3, 0] with z = 15 is declared to be the optimal solution to the integer problem. 
 
 In this example, the optimal point was obtained from the solution of the last subproblem 
generated in the final iteration. However, this is not always the case, and many times the optimal 
point is found prior to the final iteration. However, all nodes have to be fathomed to locate the 
global optimum among the local optima. 
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The Order of Selecting Unfathomed Nodes 
 
 Had the problem been solved depth first with the right-hand branch, it would not be 
necessary to expand the branch on the left because the integer feasible value of z = 15 is greater 
than z = 13.7 for the left branch. See Figure 6-6. It is quite difficult to tell in advance which subset 
strategy will work best for a particular problem. However, sometimes an intelligent guess can be 
made on which strategy to select. For example, in this problem the right subproblem generated at 
Iteration 1 had a higher optimal value than the left subproblem, 16.8 vs. 12.  It would be reasonable 
to expect that following the right-hand branch might yield an integer point with an objective value 
high enough to fathom the left node. Computer programs incorporate heuristics to assist in making 
decisions about ways to order the branching. 
 

 
START zL = 0 

│ 
max z(x) 
Ax ≤ b 
x ∈ F 

x =[0, 0.3, 1.3] 
z =17.4 

Iteration      1 
│ 

┌──────────────────────┐ 
max z(x)                                                   max z(x) 
Ax ≤ b                            Ax ≤ b 
x ∈ F                                          x ∈ F 
x2 = 0                                        x2 ≥ 1 

x =[0.7, 1, 1] 
z =17      x =[0, 0, 1.1] 

z =13.7 
Iteration      2        Iteration      3 

│        │ 
┌──────────┐                                                 ┌────────────┐ 

       max z(x)          max z(x)    max z(x)                   max z(x) 
       Ax ≤ b          Ax ≤ b             Ax ≤ b                       Ax ≤ b 

           x ∈ F                     x ∈ F                            x ∈ F                          x ∈ F 
  x2 = 0, x3 ≥ 2          x2 = 0, x3 ≤ 1           x1 ≥ 1, x2 ≥ 1               x1 = 0, x2 ≥ 1 

Infeasible    x =[0, 0, 1] 
z =12    x = [1, 1.3, 0.9] 

z =16.8 
Infeasible 

Fathomed(b)         Fathomed (c) Fathomed(b) 
zL = 12 

 
Figure 6-3  Branching Diagram through Iteration 3 
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START zL = 0 
│ 

max z(x) 
Ax ≤ b 
x ∈ F 

x =[0, 0.3, 1.3] 
z =17.4 

 Iteration 1 
│ 

 ┌──────────────────────┐ 
max z(x)                                         max z(x) 
Ax ≤ b     Ax ≤ b 
x ∈ F                                             x ∈ F 
x2 = 0                                         x2 ≥ 1 

x =[0, 0, 1.1] 
z =13.7    x = [0.7, 1, 1 ] 

z =17  
Iteration 2        Iteration 3 

│               │  
┌──────────┐                                               ┌────────────┐ 

      max z(x)                 max z(x)           max z(x)                max z(x) 
      Ax ≤ b            Ax ≤ b                        Ax ≤ b                        

      Ax ≤ b 
      x ∈ F                   x ∈ F                                       x ∈ F                         x ∈ F 
x2 = 0, x3 ≥ 2             x2 = 0, x3 ≤ 1              x1 ≥ 1, x2 ≥ 1               x1 = 0, x2 ≥ 1 

Infeasible    x = [1, 1.3, 0.9] 
z =16.8    x = [0, 0, 1] 

z =12Infeasible 
Fathomed (b)              Fathomed (c)  Fathomed (b) 

ZL = 12  
    Iteration  4  

│              
┌────────────┐ 

max z(x)                        max z(x) 
Ax ≤ b                          Ax ≤ b 
x ∈ F                               x ∈ F 

x1≥1, x2≥1, x3 = 0              x1≥1, x2≥1, x3≥1 
Infeasible  x =[3.1, 3.6, 0] 

z =15.6 
Fathomed (b) 

 
Figure 6.4 Branching Diagram through Iteration 4 
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START zL = 0 
max z(x) 
Ax ≤ b 
x ∈ F 

x = [0, 0.3, 1.3] 
z =17.4  

Iteration 1 
│    

┌──────────────────────┐ 
max z(x)                                          max z(x) 
Ax ≤ b       Ax ≤ b 
x ∈ F                                                        x ∈ F 
x2 = 0        x2 ≥ 1 

x = [0, 0, 1.1] 
z = 13.7     x = [0.7, 1, 1] 

z = 17  
Iteration  2       Iteration 3 

│         │   
┌──────────┐                                                    ┌────────────┐ 

       max z(x)                max z(x)                             max z(x)           max z(x) 
        Ax ≤ b  Ax ≤ b      Ax ≤ b             Ax ≤ b 
         x ∈ F                     x ∈ F       x ∈ F             x ∈ F 
   x2 = 0, x3 ≥ 2           x2 = 0, x3 ≤ 1              x1 ≥ 1, x2 ≥ 1        x1 = 0, x2 ≥ 1 

x = [0, 0, 1] 
z = 12    x = [1, 1.3, 0.9] 

z = 16.8    Infeasible     
Fathomed (b)       Fathomed (c)             Fathomed (b) 

zL = 12 
Iteration 4              

│   
┌────────────┐ 

max z(x)                       max z(x) 
Ax ≤ b               Ax ≤ b 
x ∈ F                           x ∈ F 

x1 ≥ 1, x2 ≥ 1, x3 = 0      x1 ≥ 1, x2 ≥ 1, x3 ≥ 1 
x = [3.1, 3.6, 0] 

z=15.6    Infeasible Fathomed (b) 
Iteration   5 

│ 
┌────────────┐ 

max z(x)                      max z(x) 
Ax ≤ b    Ax ≤ b 
x ∈ F    x ∈ F 

x1 ≥ 1, 1 ≤ x2 ≤ 3, x3 = 0         x1 ≥ 1, x2 ≥ 4, x3 = 0 
 

Figure 6.5 Branching Diagram through Iteration 5     
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Guidelines and Practical Considerations 
 
 The time required to solve a particular problem depends on the way it is formulated. The 
solution time can be reduced considerably by selecting the variables on which to branch as well as 
selecting the nodes on which the next branching is to be done. 

Figure 6-6-Branching Diagram Depth First Subset Selection Strategy
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 The choice of branching variables for improved performance are based on factors such as 
selecting a variable that has the highest fractional value, or a variable that has the greatest 
importance (which represents an important decision) in the model or the one with the lowest index 
value [3]. Similarly, the selection of nodes for further branching is based on selecting a node whose 
LP optimal value is the largest (for maximization problems). In some problems, it might be 
satisfactory to stop the branch-and-bound algorithm when a solution is within say 3% of the linear 
programming relaxation of the problem. Also, a tight lower bound on the integer variables helps 
in reducing the computation time. In addition, the number of integer variables should be as small 
as possible. This can be done by approximating integer variables that are expected to have large 
values as continuous variables. 
 
A Branch and Bound Algorithm for Binary Integer Programs 
 
 Binary Integer problems can be solved by using the same algorithm described in the 
previous section. The first step of the algorithm was to solve the linear programming relaxation of 
the original problem. The resulting solution satisfied the linear inequalities but not the integer 
restrictions of the original problem. One of the resulting non-integer variables was selected for 
further branching at the beginning of iteration 1. 
 
 However, there exists a different relaxation of the original problem, whose solution yields 
faster results. This is because, if the integer-programming problem has only 0-1 variables, the 
bounding step in the branch-and-bound algorithm can be simplified considerably. Because most 
of the work of the branch-and-bound algorithm is in the bounding step, this simplification can 
make the algorithm vary much faster. Unlike the one used for the previous example, this relaxation 
ignores the inequality constraints and requires the variables to be integers. This is in contrast to 
the previous algorithm that ignored the integer restrictions. This results in a solution set that 
satisfies the binary (integer) requirements but may not satisfy the inequalities. 
 
 The algorithm for this relaxation is obtained by slightly modifying the previous algorithm 
and is repeated here for maximizing the objective function. 
 
Step 0. Initialize 
 
Find an upper bound (for maximization problems) zU on the objective function. This is done by 
setting the variables in the objective function with negative coefficients to zero and positive 
coefficients to one. Check if this solution set satisfies the constraints. If not, then further branching 
is required. Find a lower bound zL on the objective function by setting all the variables with positive 
coefficients to zero and the rest to one. This is the minimum value that the objective function can 
have, and the optimal solution cannot be lower than this value. This forms the initial lower bound 
for the problem. Later, as the solution proceeds, the lower bound will be updated if any solution 
set is found that satisfies all the constraints and has a higher objective function value. 
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Step 1. Branch 
 
Select any (remaining) binary variable to branch on and form two new subsets by setting this 
binary variable to one and zero respectively. 
 
Step 2. Bound 
 
With this variable fixed, find an upper bound on the objective function by setting the remaining 
variables to 1's and 0's (depending on whether they have positive or negative coefficients). Also 
find a lower bound on the objective function. 
 
Step 3. Fathom 
 
Examine the nodes and fathom a node: 
 
(a) If zU ≤ zL i.e., The upper bound of the subset is lower than the current lower bound of the 
problem. 
 

(b) If any of the constraint becomes infeasible as a result of fixing the branching variable to 1 or 
0. The way to do it is to find the maximum or minimum value that each constraint can assume 
(after fixing the branching variables to particular values of 1's or 0's) and to check if it still lies 
within the limits of the inequalities. If it does not, then it means that there does not exist any 
combination of 1's and 0's for the remaining variables that can satisfy the constraint. The 
subproblem is considered to be infeasible if any of the constraint cannot be satisfied, and hence 
such nodes are fathomed. 
 
(c) If zU is a feasible solution. If so, then this set is the new incumbent solution since it is the best 
integer solution obtained so far. 
 
Step 4. Test 
 
Return to step 1 if there are any unfathomed nodes. Else, the current lower bound (incumbent 
solution) is the optimal value for the 0-1 problems. 
 
 A major part of this algorithm is the same as given in the previous section. The difference 
lies in the way the algorithm is implemented i.e., the way in which the subset is determined to be 
infeasible or not. Also, the upper and lower bounds are obtained by direct substitution. Hence, LP 
relaxation of the subproblems need not be solved at each step. This results in a faster and easier 
way to solve binary problems. 
 
A Branch-And-Bound Example for Binary (0-1) Integer Problem 
 
 Consider the following example, after Ecker and Kupferschmid [2]. It demonstrates how 
the speed of branch-and-bound algorithm can be increased when an integer program contains only 
0-1 variables by using the algorithm given above. 
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 max:            z(x) = 3x1 + 2x2 + 5x3 + 7x4         (6-8a) 
   subject to:   3x1 - 2x2 + 2x3 + 5x4 ≥ 6 
    5x1 + 3x2 - x3 + 4x4 ≤ 3         (6-8b) 
            xj = 0 or 1, j = 1,.....4 
 
Relaxation of the above problem after ignoring the inequalities is given below. 
 
      max:       z(x) = 3x1 + 2x2 + 5x3 + 7x4           (6-9)           
 
    xj = 0 or 1, j = 1...., 4 
 
 All the objective function coefficients happen to be positive, so the largest possible value 
of z(x) (upper bound) would be z(x) = 17 when x = [1, 1, 1, 1], zU = 17. No further computations 
would have been needed if this point were to be feasible. It is found by inspection of the original 
problem that x = [1, 1, 1, 1] is not feasible because the second constraint is violated. In this way, 
the initial relaxed problem can be solved by inspection. The constraints are then evaluated to decide 
if this solution is feasible for the original problem. 
 
 Next, a lower bound on the objective function value is found by inspection and for the 
above problem, the minimum value that z(x) could have is when all the nonnegative cost 
coefficients in the objective function are 0, which yields z(x) = 0 when x = [0, 0, 0, 0]. Thus, the 
branch-and-bound process starts for the above process with zL = 0. The results of the process are 
shown at the top of the branching diagram in Figure 6-7. The main idea here too is to systematically 
eliminate from further consideration, subsets that can be determined not to contain the optimal 
point for the original problem. 
 
 The term x = 0 _ _ _ and x = 1 _ _ _ implies that the value of x1 is fixed whereas x2, x3 and 
x4 are free to assume values of either 0 or 1. Hence, this term is referred to as the partial solution 
of x1. When a particular combination of x2, x3 and x4 fills up the blanks in a partial solution, the 
resulting vector is called a completion of the partial solution. A completion that has all zeroes after 
the partial solution is called the zero completion. For example, 1 0 0 0 is called the zero completion 
of the partial solution 1 _ _ _. Finally, a completion that satisfies all the inequality constraints is 
called a feasible completion. 
 
 Selecting x1 as the variable on which to branch, we get two possible configurations;  
x = 1 _ _ _ and x = 0 _ _ _, as shown in Figure 6-7. The next step is to find an upper bound on the 
objective value for each of the subproblems. As mentioned before, the largest value of the objective 
function can be found by setting all variables with positive coefficients to one and those with 
negative coefficients to zero. In this case, the upper bound on the objective function for the right 
subproblem (with x1 = 0) is z(x) = 14, at the point x = [0,1,1,1] whereas for the left subproblem 
(with x1 = 1); zU = 17 at the point x = [1,1,1,1]. 
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 Now, the nodes are subjected to the fathom checks to determine if they could be fathomed. 
As both subproblems have their upper bound zU greater than the current lower bound of zL = 0, 
neither of them can be fathomed on the basis of condition (a). Condition (b) is a check on the 
feasibility of the subproblems. To determine this, one must find out if there are any feasible 
completions to the partial solutions of the subproblems. One way of doing this is to exhaustively 
enumerate all the possibilities for a particular partial completion and check them in the original 
inequality constraints. In this case, the partial completion x = 0 _ _ _ has 8 combinations of 
completions such as 0000, 0001, 0010, 0011, ...., 0111. This is not practical, especially when there 
are many variables and constraints. 
 
 An alternate and easier method is to simply eliminate subproblems that are discovered to 
be infeasible. As mentioned before, this is found by checking if the maximum or minimum values 
of the constraints lie within the limits of their inequalities. The inequality constraints with x1=1 for 
the left subproblem are as follows: 

START zL = 0 

│ 

max z(x) 

Ax ≤ b 

x ∈ I 

 

x = [1, 1, 1, 1] 

z = 17 

Iteration 1 

│ 

┌──────────────────────────────────┐ 

max z(x)                                                      max z(x) 

      Ax ≤ b             Ax ≤ b 

      x ∈ I                                                     x ∈ I 

      x = 1 _ _ _                                                          x = 0 _ _ _ 

 

x = [0, 1, 1, 1] 

Infeasible         z1 = 14 

Fathomed(b) 

│ 

│ 

          zU       17 upper bound         

               │ Iteration      2 

z1        14      ┌────────────────┐ 

                 max z(x)             max z(x) 

         z2        12 new incumbent solution           Ax ≤ b           Ax ≤ b 

        z2 = 12               x ∈ I                                x ∈ I 

         and new lower bound.    x = 0 1 _ _                    x = 0 0 _ _ 

            

           Infeasible  x = [0, 0, 1, 1]   

           z2 = 12  

             Fathomed(b)           Fathomed(c) 

  

 zL   0 initial lower bound.     

                       

            Figure 6-7 Complete Branching Diagram for the Binary Integer Example. 
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 f1(x) = 3(1) - 2x2 + 2x3 + 5x4 ≥ 6  (6-10) 
 f2(x) = 5(1) + 3x2 - x3 + 4x4 ≤ 3 
 
The largest value that the first constraint can have is obtained by setting all (remaining) variables 
with positive coefficient to one and the rest to zero. This yields f1(x) = 10 at the point x = [1,0,1,1]. 
Similarly, the minimum value that the second constraint can have is f2(x) = 4 at the point x = 
[1,0,1,0]. Since, even the minimum value of the second constraint cannot satisfy the inequality 
condition, it implies that there are no completions of the partial solution x = 1 _ _ _ that will satisfy 
the second constraint. This means that x1 cannot have a value 1 in the final optimal solution. Hence 
the left node can be fathomed by condition (b). There is no need to check the rest of the constraints 
if any other constraint is unsatisfied. 
 
 Performing the same sort of analysis for the right subproblem with x1 = 0 gives the 
constraints: 
 
 f1(x) = (0) - 2x2 + 2x3 + 5x4 ≥ 6  (6-11) 
 f2(x) = (0) + 3x2 - x3 + 4x4 ≤ 3 
 
The first constraint has the maximum value f1(x) = 7 at the point x = [0,0,1,1]. Similarly, the second 
constraint has a minimum value f2(x) = -1 at the point x = [0,0,1,0]. Hence, there is at least one 
completion each for the partial solution x = 0 _ _ _ that satisfies the two constraints. Therefore, the 
right subset cannot be fathomed on the basis that it is infeasible [condition (b)]. This does not 
necessarily mean that the subset is feasible as there might not be any single completion that 
satisfies both constraints. Also, no attempt is made to find a single completion that satisfies all 
constraints. 
 
 To finish the fathom check it is necessary to determine whether the point yielding the upper 
bound on the objective function (in this case, x = [0,1,1,1]) is feasible or not. Inspecting the 
constraints, it is found that the first constraint is not satisfied, and this point is infeasible. Thus, 
condition (c) fails as well and hence, another branching will be required. 
 
 Selecting x2 as the next variable to branch on, two new subsets are generated with partial 
solutions 0 1 _ _ and 0 0 _ _. Once again, the first step would be to find an upper bound on the 
objective value over each of the two new subproblems. For the left subproblem, the upper bound 
on the objective function is z(x) = 14 at the point x = [0,1,1,1] whereas the right subproblem yields 
an upper bound z(x) = 12 obtained at the point x = [0,0,1,1]. 
 
 Performing the fathom check on the subproblems, we find that the nodes cannot be 
fathomed by condition (a) because both upper bounds are greater than the current lower bound of 
zL = 0. Checking for the feasibility of the subproblems, we see that the partial solution 0 1 _ _ of 
the left subproblem cannot satisfy the first constraint. Hence, the left node is fathomed by condition 
(b). For the right subproblem, each constraint has feasible completions to the partial solution 0 0 
_ _ node and so it cannot be fathomed by condition (b). 
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 The final fathom condition checks the feasibility of the point yielding the upper bound. It 
turns out that x = [0,0,1,1] satisfies both the constraints and hence, this node is fathomed by 
condition (c) and the point x = [0,0,1,1] is declared to be the new incumbent solution with zL = 12 
as the new lower bound. Finally, as there are no more nodes to be fathomed, x = [0,0,1,1] is 
declared to be the optimal point with z = 12. The final branching diagram is as shown in Figure 6-
7. 
 
It should be noted here that when checking for infeasibilities, no attention is paid to the objective 
function value. Similarly, when an upper bound is being established on the objective function, the 
constraints are ignored altogether. Moreover, it is never attempted to find the best feasible 
completion to a subproblem in any single step of the algorithm. This makes each step in the branch-
and-bound algorithm easy enough to be performed by inspection for problems that could be 
worked out by hand. 
 
Mixed Integer Linear Programming 
 
 Problems in which only some of the variables assume integer values and the rest are 
continuous are called as mixed integer programming problems. The integer variables can be either 
pure integer or binary integer or both. Suppose there are n variables out of which h are integer 
variables; the mathematical model in the minimization form can be expressed as: 
 
      n 
 Minimize:   z = Σ cjxj, (6-12) 
     j=1 
       n 
 Subject to:  Σ aijxj < bi,   for i = 1,2, ..., m, 
     j=1 
      
     xj integer  for j = 1,2,....,h (h ≤ n) 
     xj ≥ 0   for j = h + 1, ,...., n 
 
This model becomes a pure integer-programming problem when h is equal to n. 
 
A Branch-And-Bound Algorithm for Mixed Integer Linear Programs 
 
 The simplest way of solving mixed integer problems is to use the branch and bound 
algorithm for general integer programs with the only difference being in the branching step. 
Though all variables are included in the LP subproblems, branching is done only on integer 
variables. This ensures that the solution found by the algorithm is optimal for the mixed integer 
problem. The steps are described as follows for maximizing the objective function. 
 
Step 0. Initialize. 
 
Solve the linear programming relaxation of the original problem. If the resulting solution has 
integer values for all integer variables then the optimal solution for the integer program has been 
found.  
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The linear programming relaxation solution provides an upper bound zU to the problem because 
the optimal integer solution cannot have an objective function value larger than the linear 
programming relaxation solution. The imposition of integer restrictions on the integer variables 
can only make the solution worse.  
 
If the solution does not have integer values for all integer variables, then a lower bound zL for the 
optimal objective function value is found that is equal to the objective value at some point that is 
feasible for the integer program. This could be where all of the variables are zero or some 
comparable solution that satisfies all the constraints and which will surely be smaller than the final 
optimal value. If no such feasible point is readily known, set zL = -∞.  
 
This lower bound solution is also designated as the incumbent solution. This means that it is the 
best integer solution obtained so far. When a better integer feasible point is obtained as the solution 
proceeds, then that would be the new incumbent solution. 
 
Step 1. Branch  
 
Select an integer variable that currently has a non-integer value from Step 0 and partition the set 
into two smaller subsets. A subset is obtained from a set by introducing an additional constraint to 
the set. The additional constraint depends on the integer variable that is selected for branching and 
also on the (non integer) value of the integer variable when it is selected for further branching.  
 
For example, if the integer variable xj has the value k < xj <k+1 where k is an integer, then the 
partitioning is done by adding the constraint xj ≤ k and xj ≥ k+1 to the two subsets respectively. 
 
Step 2. Bound. 
 
Solve the linear programs that are obtained by appending the extra constraint as a result of Step 1, 
to the original programming relaxation. These are designated as subsets, and their resulting optimal 
values (if they are not infeasible) would be the upper bound zU for that branch when the subset is 
developed because additional integer constraints are added in expanding branches. 
 
Step 3. Fathom. 
 
Examine the subsets that contain the optimal points, and fathom a subset if: 
 
(a)  zU ≤ zL, i.e. subset objective function value is less than the lower bound, then no further      
evaluations are needed. 
 
(b)  the subset has no feasible points, then no further evaluations are needed. 

    
(c)  If the optimal solution obtained has integer values for all xj's for  j = 1, 2, . . .h  and zU > zL, 
then this solution is called the integer-feasible point. It is designated the new incumbent solution, 
and let zL = zU. 
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Step 4. Test. 
 
Select a subset among those from Step 1 that have non-integer values for branching. If all subsets 
have been fathomed, the incumbent solution is optimal for MILP. Otherwise, return to Step 1. 
 
 The procedure would remain unchanged even if the objective was to minimize rather than 
maximize the objective function except that the roles of the upper and lower bounds are reversed. 
Thus, zL would be replaced by zU and vice versa, ∞ becomes -∞, and the directions of the 
inequalities would be reversed. 
 
Mixed Integer Linear Programming Problem 
 
 Consider the following MILP problem, after Murty (7): 
  
 max    z(x, y) = -3x2 - 4x3 - 5x4 - 20                 (6-13a) 
    
   subject to x1 - x2 + x3 + x4 = 4 
 y1 + x2 - 2x3 + x4 = 3/2      (6-13b) 
     y2 + 2x2 + x3 - x4 = 5/2 
     y1, y2 ≥ 0 and integer; x1 to x4 ≥ 0 
 
 The first step is to solve the LP relaxation of the original problem. As shown in the 
branching diagram of Figure 6-8, the optimal solution does not satisfy the integer requirements of 
y1 and y2. Hence further branching is required on either y1 or y2. Selecting y2, the additional 
constraints over the two new subsets would be y2 ≤ 2 and y2 ≥ 3 respectively. The upper bound on 
the objective value is  -20. The right subproblem is solved with this additional constraint and the 
output is an integer solution with zU = -90/4. Hence this subset is fathomed by condition(c) and the 
solution declared to be the new incumbent solution with zL = zU.  
 
 Solving the LP relaxation of the left subproblem yields an upper bound of -83/4 which is 
larger than the current lower bound of zL = -90/4. Hence this subset cannot be fathomed, and further 
branching is required. Branching on y1 and solving the right-hand subset, we get an integer solution 
with zL ≥ zU. This subset is therefore fathomed by condition(c) and the solution is the new 
incumbent solution. The lower bound is reset to zL = -86/4. Solving the left subproblem and 
checking the fathom conditions, we find that it can be fathomed by condition(a). Since there are 
no more subproblems left, the current incumbent solution is the optimal solution for the MIP 
problem with an objective value z = -86/4 and (y1, y2, x1, x2, x3, x4) = (2, 2, 19/5, 1/10, 3/10, 0).  
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Optimal Process Synthesis and Design 
 
 Determining the optimal configuration when designing processes and plants is one of the 
more important applications of mixed integer programming.  This consists of selecting the best 
configuration of reaction and separations units and the best operating conditions to convert raw 
materials into products.  A superstructure of possible reactors, separators and related units are 
synthesized, typically using a flowsheeting program. The continuous variables represent the 
continuous variables such as flow rates, temperature, pressures, and binary variables represent the 
configuration of process units.  The optimal structure and operating conditions are determined by 
solving a mixed integer linear programming problem (MILP) or a mixed integer nonlinear 
programming problem (MINLP), depending on the complexity of the process model.  
 
 Other industrial applications include heat exchanger synthesis where the optimum heat 
exchanger network is determined to minimize annual cost and to satisfy the utilities requirements 

START zL = -∞ 
│ 

max z(x,y) 
A(x, y) ≤ b 
(x, y) ∈ F 

(y, x) = [3/2 ,5/2 4, 0, 0, 0] 
Z =  -20 
z =-20 

Iteration 1 
│   

┌──────────────────────┐ 
max z(x, y)                                               max z(x, y) 
A (x, y) ≤ b      A(x, y) ≤ b 
(x, y) ∈ F                                               (x, y) ∈ F 

y2 ≤ 2                                                       y2 ≥ 3 
      (y, x) = [5/4, 2, 17/4, 1/4, 0, 0]     (y, x) = [1, 3, 9/2, 0, 0, 1/2] 
   z=-83/4        z = -90/4 
        Fathomed(c) 

Iteration 2 
│ 

┌─────────────────────────────┐ 
max z(x,y)          max z(x,y) 
A(x,y) ≤ b       A(x,y) ≤ b 
(x,y) ∈ F       (x,y) ∈ F 

y2 ≤ 2, y1 ≤ 1       y2 ≤ 2, y1 ≥ 2 
            (y,x)=[1 , 3/2, 9/2, 1/2, 0, 0]               (y,x)=[2 , 2, 19/5, 1/10, 0] 
   z=-86/4          z=-86/4 
   Fathomed(a)     Fathomed(c) 
         Optimal solution; z = -86/4 

 
 Figure 6-8 Branching Diagram for the MILP Problem 
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(steam and cooling water) in a plant design or in an existing plant retrofit.  Similar results are 
obtained for mass exchanger networks, chemical reactor networks, distillation column networks 
and the optimum location for the feed tray in a distillation column to meet product specifications 
and maximize profit. In batch process scheduling, the optimum sequence for the use of equipment 
to produce multiple products is determined.  In reaction path synthesis, the optimal path is 
determined to go from raw materials to products, e.g., the manufacture of acetone from ethanol 
and methane. 
 
 To predict the chemical and phase equilibrium for a set of gas, liquid and solid reactants 
by free energy minimization, the optimization of a mixed integer programing problem is required 
since the gas, liquid and solid phases may not have all of the components in all of the phases.  
There are a number of special programs to perform this evaluation that contain extensive 
thermodynamic properties in polynomial form. 
 
 Following the description of methods to formulate mixed integer problems, an example is 
given for a process superstructure where the optimum structure is obtained by solving a MILP 
using the optimization program GAMS.  The important feature of the GAMS is that this 
optimization programming language uses the same structure and format that is used to express the 
optimization problem mathematically, and there are a number of solvers that can be called to 
preform the optimization, depending on the type of problem. 
 
Summary of MIP Problem Formulations  
 
 In formulating the optimization problem, a convention is used.  In selecting among 
process units, the following equations are used with integer variable yi where yi is 1 if process i is 
selected and 0 if not.  
 

∑ yi   =  1    select only one unit  
 

∑ yi    <  1    select at most one unit  
 

∑ yi    >  1    select at least one unit  
 

yj  -   yi   < 0    select unit i only if unit j is selected  
 
The last condition is used when there are several sequences of process units from which one 
sequence is to be selected.    
 
 For activation or deactivation of continuous variables, the bounds on capacities on a 
process unit can be used. If a process unit does not exist, then the inlet flow rate should be zero; 
and if it exists, the flow rate should be within the bounds of the upper and lower limits, FiL and 
FiU .  This can be expressed as:  
 

FiL yi    <  Fi    <    FiU yi  
 

   for yi = 1 then  FiL <  Fi    <    FiU 
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yi = 0 then    0 <  Fi    <    0 or Fi = 0    

 
 For activation and relaxation of constraints, consider the constraints f1(x) = 0 and f2(x) < 
0 that describe a process unit.  If the process unit exist, then yi  =  1 , and the constraints should 
be active.    If the process unit does not exist, then yi   = 0, and constraints should be do not exist 
(are inactive).  This case can be formulated using slack variables s1, s2 and s3 and upper bounds 
U1 and U2.  Slack variables are variables that are added to inequality constraint equations to 
convert them to equality constraints.  
 

 f1(x) +  s1 -  s2    = 0  
 f 2 (x)   < s3 
 s1 +  s2      <  U1 (1 - yi )  
 s3   <  U2 (1 - yi )  
 
and s3 can be eliminated to give:  
 

f2 (x) -  U2 (1 - yi )    < 0  
 

For example, if yi   =1, then s1 -  s2 <  0 or s1 -  s2 =  0 , and   s1 =  s2 = 0 since both are 
positive.  This gives the result that:  
 
 f1 (x) =  0  
 f2 (x)   < 0  
 
If yi   = 0, then s1 +  s2 <  U1 and s3   <  U2 .  The constraints are inactive.  

 
 f 1 (x) +  s1 -  s2    = 0  
 f 2 (x)   < s3 <  U2  
 
This and additional information are given by Floudas, (19) for nodes with several inputs, logical 
constraints and bilinear products. 
 
Example for Optimal Design of a Chemical Complex 
 
In this example, modified from Karimi (6), a mixed integer-programming problem is solved to 
demonstrate the selection of the optimal process design from options to make or purchase raw 
materials for the plant.  The diagram in Figure 6-9 shows a superstructure of several options to 
produce the product from the raw materials. 
 
As shown in Figure 6-9, a company is evaluating producing chemical C (propylene oxide) from B 
(propylene) in either Process 2 (chlorohydrin process) or Process 3 (peroxide process).  Also, B 
(propylene) can be made in Process 1 (steam cracking of propane to propylene) using A (propane) 
as a raw material, or B (propylene) can be purchased from another company.   
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This evaluation requires solving a mixed integer linear programming problem.  The economic 
model includes fixed and operating costs as given in the table below.  The constraints are material 
balances mass yields, demand for product and availability of raw materials as shown in the table.  
Integer variables are used to have C produced from B in either process 2 or process 3 and to have 
B either produced in process 1 or purchased from another company.  
 
The optimal solution will select either process 2 or 3 to produce C and determine if B is to be 
purchased or produced in process 1 by maximizing the profit.  Also, the optimal amounts of B and 
C will be determined given the demand for C and the availability of A. 
 
Economic Data 

Fixed Operating 
Cost  Cost        Sales 

Process ($/hr)  ($/ton of feed)  Feed Cost ($/ton) Product Price ($/ton)        
  1  1,000  250    A 500       C     1,800 
  2  1,500  400    B 950 
  3    2,000  550      
 
Process Data 
         Availability of Raw 
  Process      Mass Yields  Demand for Product Materials                   
  1 (A to B)     0.90     C < 10 tons/hr. A  < 16 tons/hr 
  2 (B to C)    0.82        
  3 (B to C)    0.95    
 
The process variables are defined as follows where F designates the mass flow rate in tons per 
hour.  The first subscript specifies the stream number and the second subscript gives the 
component (chemical species) in the stream.  
 
F1A flow rate of A to Process 1 
F2B flow rate of B to either Process 2 or 3 if Process 1 is selected 
F3A flow rate of unreacted A from Process 1 
F4B flow rate of B purchased from a supplier if a supplier is selected 
F5B flow rate of B to either Process 2 or 3 
F6B  flow rate of B to Process 2 if Process 2 is selected 
F7B flow rate of B to Process 3 if Process 3 is selected 
F8C flow rate of C if Process 2 is selected 
F9B  flow rate of unreacted B if Process 2 is selected 
F10C flow rate of C if Process 3 is selected 
F11B flow rate of unreacted B if Process 3 is selected 
F12C  flow rate of C to sales 
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Integer variables are used to ensure either process 1 is used for making B from A or B is 
purchased.  Also, they are used to ensure that either Process 2 or 3 is selected.  They are defined 
as follows: 
 
y1 = 1 if Process 1 is selected and 0 if not 
y2 = 1 if Process 2 is selected and 0 if not 
y3 = 1 if Process 3 is selected and 0 if not 
y4 =1 if B is purchased and 0 if not  

Process 1
A          B

Process 2
B          C

Process 3
B          C

F1A

flow rate of A
(tons/hr)

F1B

flow rate of B
purchased
(tons/hr)

F3A

flow rate of A
unreacted
(tons/hr)

F2B

flow rate of B
(tons/hr)

F9B

flow rate of B
unreacted
(tons/hr)

F11B

flow rate of B
unreacted
(tons/hr)

F8C

flow rate of 
C
(tons/hr)

F10C

flow rate of 
C
(tons/hr)

F12C

flow rate of C
product
(tons/hr)

F6B

F7B

1
2

3

4

5

6

7

8

9

10

11

F5B

Figure 6-9 Process Superstructure Diagram for Optimal Design Example  
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The material balances associated with the processes and the nodes in the diagram are as follows. 
 
Conversion of A to B in Process 1: 
 F2B  =  0.90 F1A 
 F3A   =  0.10 F1A 

 

Conversion of B to C in Process 2: 
 F8C  =  0.82 F6B 
 F9B   =  0.18 F6B 

 
Conversion of B to C in Process 3: 
 F10C  =  0.95 F7B 
 F11B   =  0.05 F7B 

 
Material balance on B at node between processes: 
 F2B  + F4B  = F5B 
 F5B  = F6B  + F7B 
 
Material balance on C at the node from Processes 2 and 3: 
 F8C  + F10C  = F12C  
 
Availability of raw material A: 

F1A  < 16  must be modified to include the possibility of not having Process 1  
F1A  < 16 y1 operating by incorporating binary integer variable y1 

 

Availability of raw material B: 

 F4B
  < 20 must be modified to include the possibility of only purchasing B  

 F4B < 20 y4 by incorporating binary integer variable y4 
 
Demand for product C: 

F12C  < 10  must be modified to include the possibility of only having Process 2 or 3  
F8C   < 10 y2 operating by incorporating binary integer variables y2 and y3 

 F10C  < 10 y3 
 
Integer equations  
 Integer equation forcing the selection of Process 1 or purchase of B 
 y1  + y4  =  1 
 
 Integer equation forcing the selection of either Process 2 or 3 
 y2  + y3  = 1 
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Combining the constraint equations with the economic model in the MILP format gives: 

  operating cost         fixed cost   feed cost     sales 

max: -250F1A - 400F6B - 550 F7B - 1,000y1 - 1,500y2 - 2,000y3 -500 F1A  - 950 F4B + 1,800 F12C  
 

subject to:   mass yields -0.90 F1A  + F2B  = 0 
      -0.10 F1A  + F3A   = 0 
      -0.82 F6B  + F8C  = 0 
      -0.18 F6B  + F9B   = 0 
      -0.95 F7B  + F10C = 0 
      -0.05 F7B  + F11B  = 0 

 
       node MB F2B  + F4B  - F5B = 0 
      F5B  = F6B  - F7B  = 0 
      F8C  + F10C - F12C= 0   
    
      availability of A   F1A   <  16 y1 

       availability of B F4B   <  20 y4 

       demand for C  F8C   <  10 y2  

       F10C  <  10 y3 
 
      integer constraints y2 + y3 = 1  
       y1 +  y4  =  1 

 

 The optimal structure for the example was obtained using the GAMS program in Figure 6-
10.  The start of the results is an echo print of the program as shown in Figure 6-10 that includes 
defining binary and positive variables and the equations. This is followed by the equations for the 
process model and the objective function. Statement on line 67 has the program use all of the 
equations and on line 69 to maximize the PROFIT using the solver MIP.  Then the results give a 
status of the solution including:  1 normal completion, 1 optimum found and the value of the 
objective function at the optimum.  This is followed by values for the lower level, upper and 
marginal values of the constraint equations.  The marginal values are the values of the Lagrange 
multipliers, the level values are for the inequality constraints, and “.” is used to indicate a zero 
value.  See the sensitivity analysis discussion in the linear programming chapter.  This is followed 
by values for the lower level, upper and marginal values of the variables.  The variables in the 
optimum basis will leave the basis if the upper and lower limits are exceeded, as discussed in the 
section on sensitivity analysis in the linear programming chapter.  
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 Figure 6-10 GAMS Program and Results for the Optimal Design Example 
 
GAMS Program 
 
Design of a Chemical Complex 
   3  *filename:  PROCESS.gms 
   4  option optcr=0, limrow=0, limcol=0; 
   5 
   6 BINARY VARIABLES 
   7   Y1 denotes selection of process 1 when equal to one 
   8   Y2 denotes selection of process 2 when equal to one 
   9   Y3 denotes selection of process3I when equal to one 
 10   Y4 denotes selection of purchased B when equal to one;  
 11 
 12 POSITIVE VARIABLES 
 13 F1A Flow rate of A to Process 1 (All flow rates in tons per hour)  
14  F2B  Flow rate of B to either Process 2 or 3 if Process 1 selected  
15   F3A  Flow rate of unreacted A from process 1 
16   F4B  Flow rate of B purchased from a supplier if supplier selected 
17   F5B  Flow rate of B to either Process 2 or 3 
18   F6B  Flow rate of B to Process 2 if Process 2 selected 
19   F7B  Flow rate of B to Process 3 if process 3 selected 
20   F8C  Flow rate of C if Process 2 selected 
21   F9B  Flow rate of unreacted B if Process 2 selected 
22  F10C   Flow rate of C if Process 3 selected 
23  F11B   Flow rate of unreacted B if Process 3 is selected 
24  F12C Flow rate of C to sales ; 
25 
26   VARIABLE PROFIT objective function  ; 
27  
28  EQUATIONS  
29   E1  conversion of B to C in Process 1 
30   E2  unreacted A from mass balance on Process 1 
31   E3  conversion of C in Process 2 
32   E4  unreacted B from mass balance on Process 2 
33   E5  conversion of B to C in Process 3 
34   E6  unreacted B from mass balance on Process 3;  
35        E7    material balance on node from Processes 1 and purchased B 
36   E8  material balance on node to Processes 2 and 3 
37   E9  material balance on node from processes 2 and 3 to sales  
38        E10   availability of raw material 
39        E11   demand for product if from Process 2 
40        E12   demand for product if from Process 3 
41        E13   integer constraint to select either Process 1 or purchase B  
42        E14   integer constraint to select either process 2 or 3 
43        OBJ   objective function definition; 
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44 
45   E1 ..   -0.90*F1A  + F2B  =E= 0 ; 
46   E2 ..   -0.10*F1A  + F3A  =E= 0 ; 
47   E3 ..   -0.82*F6B  + F8C  =E= 0 ; 
48   E4 ..   -0.18*F6B  + F9B  =E= 0 ; 
49   E5 ..   -0.95*F7B  + F10C =E= 0 ; 
50   E6 ..   -0.05*F7B  + F11B =E= 0 ; 
51   E7 .. F2B + F4B - F5B  =E= 0 ; 
52   E8 .. F5B - F6B - F7B =E= 0 ; 
53   E9 ..  F8C + F10C- F12C =E=0  ; 
54  E10..  F1A -  16*Y1   =L= 0  ;  
55   E11.. F8C -  10*Y2   =L= 0  ; 
56   E12.. F10C - 10*Y3  =L= 0  ; 
57   E13..  Y1+ Y4  =L=1  ; 
58   E14..  Y2+ Y3  =L=1  ; 
59  
60  * constraint for the maximum demand of product C 
61  * is declared as an upper bound here 
62    F12C.UP    = 10 ; 
63 
64   OBJ .. PROFIT =E= -250*F1A - 400*F6B - 550*F7B - 1000*y1 -1500*y2 
65                   - 2000*y3 -500*F1A  - 950*F4B +1800*F12C         ; 
66  
67   MODEL PROCESS /ALL/                                                  ; 
68  
69   SOLVE PROCESS USING MIP MAXIMIZING PROFIT         ; 
 
Printout of Results from the GAMS Program 
 
COMPILATION TIME     =        0.000 SECONDS    0.7 Mb      WIN-18-097 
Design of a Chemical Complex 
Model Statistics SOLVE PROCESS USING MIP FROM LINE 69 
 
MODEL STATISTICS 
 
BLOCKS OF EQUATIONS  15 SINGLE EQUATIONS       15 
BLOCKS OF VARIABLES  17 SINGLE VARIABLES       17 
NON ZERO ELEMENTS  40 DISCRETE VARIABLES      4 
 
GENERATION TIME = 0.000 SECONDS 1.4 Mb  WIN-18-097 
EXECUTION TIME  = 0.000 SECONDS 1.4 Mb  WIN-18-097 
 
   SOLVE SUMMARY 
 MODEL   PROCESS    OBJECTIVE  PROFIT 
 TYPE    MIP     DIRECTION  MAXIMIZE 
      SOLVER  OSL    FROM LINE  69 
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**** SOLVER STATUS  1 NORMAL COMPLETION 
**** MODEL STATUS  1 OPTIMAL 
**** OBJECTIVE VALUE  459.3496  

 RESOURCE USAGE, LIMIT 0.160     1000.000 
ITERATION COUNT, LIMIT 5           10000 
 
OSL Version 1 Jul 4, 1999 WIN.OS.18.1 055.035.036.WAT OSL Version 1 
Work space allocated           --    0.18 Mb 
 
     LOWER     LEVEL     UPPER    MARGINAL 
---- EQU E1   .  . .  833.333 
---- EQU E2   .  . .  EPS 
---- EQU E3   .  . .  1504.065  
---- EQU E4   .  . .  EPS 
---- EQU E5   .  . .  1456.140 
---- EQU E6   .  . .  EPS 
---- EQU E7   .  . .  -833.333  
---- EQU E8   .  . .  -833.333  
---- EQU E9   .  . .  -1656.140 
---- EQU E10   -INF  -2.450 .  . 
---- EQU E11   -INF  . .  152.075 
---- EQU E12   -INF  . .  200.000 
---- EQU E13    -INF  1.000  1.000  . 
---- EQU E14   -INF  1.000  1.000  . 
---- EQU OBJ   .  . .  1.000 
 
  E1 conversion of B to C in Process 1 
 E2 unreacted A from mass balance on Process 1 
  E3 conversion of C in Process 2 
   E4 unreacted B from mass balance on Process 2 
 E5 conversion of B to C in Process 3 
 E6 unreacted B from mass balance on Process 3;  
 E7 material balance on node from Processes 1 and purchased B 
  E8 material balance on node to Processes 2 and 3 
  E9 material balance on node from processes 2 and 3 to sales  
        E10 availability of raw material 
 E11 demand for product if from Process 2 
 E12 demand for product if from Process 3 
 E13 integer constraint to select either Process 1 or purchase B  
 E14 integer constraint to select either process 2 or 3 
 OBJ objective function definition; 
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    LOWER      LEVEL UPPER     MARGINAL 
---- VAR Y1   .  1.000      1.000   -1000.000 
---- VAR Y2   .  1.000     1.000     20.753 
---- VAR Y3   .  .  1.000       EPS 
---- VAR Y4   .  .  1.000       EPS 
---- VAR F1A   .  13.550      +INF        . 
---- VAR F2B   .  12.195      +INF        . 
---- VAR F3A   .  1.355  +INF   .  
---- VAR F4B   .  .  +INF  -116.667 
---- VAR F5B   .  12.195      +INF        .   
---- VAR F6B   .  12.195      +INF        . 
---- VAR F7B   .  .  +INF        . 
---- VAR F8C   .  10.000      +INF        . 
---- VAR F9B   .  2.195      +INF        . 
---- VAR F10C  .  .  +INF  . 
---- VAR F11B  .  .  +INF  . 
---- VAR F12C  .  10.000     10.000    143.860 
---- VAR PROFIT          -INF  459.350      +INF        . 
 
Y1  denotes selection of process 1 when equal to one 
Y2  denotes selection of process 2 when equal to one 
Y3  denotes selection of process 3 when equal to one 
Y4  denotes selection of purchased B when equal to one;  
F1A Flow rate of A to Process 1 (All flow rates in tons per hour)  
F2B  Flow rate of B to either Process 2 or 3 if Process 1 selected  
F3A  Flow rate of unreacted A from process 1 
F4B  Flow rate of B purchased from a supplier if supplier selected 
F5B  Flow rate of B to either Process 2 or 3 
F6B  Flow rate of B to Process 2 if Process 2 selected 
F7B  Flow rate of B to Process 3 if process 3 selected 
F8C  Flow rate of C if Process 2 selected 
F9B  Flow rate of unreacted B if Process 2 selected 
F10C   Flow rate of C if Process 3 selected 
F11B   Flow rate of unreacted B if Process 3 is selected 
F12C Flow rate of C to sales; 
PROFIT      objective function 
 
**** REPORT SUMMARY:         
  0      NONOPT 
             0  INFEASIBLE 
           0  UNBOUNDED 
EXECUTION TIME       = 0.000 SECONDS 0.7 Mb  WIN-18-097 
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Computer Codes Available for Solving MILP Problems 
 
 MILP models can be solved using a variety of computer codes. A few of which are 
described here. The main frame mixed integer-programming solver that has been available for a 
number of years is the IBM Mathematical Programming System Extended (MPSX/370) that 
supports Mixed Integer Programming (MIP). Since this solver is a mainframe utility, it can handle 
very large problems. The problem data is stored in MPS file format and a separate Control Program 
is written to solve the problem. The detailed documentation is given in IBM manuals [9]. 
 
 GAMS (General Algebraic Modeling System) is a program for solving LP, MILP as well 
as NLP and MINLP. This system was developed at the World Bank to solve very large economic 
problems and extended by the GAMS Development Corporation in Washington D. C.  GAMS is 
a high-level language that makes concise algebraic statements of models and hence is easier to 
understand and implement. Detailed documentation of GAMS is given in the GAMS manual [10].  
One of the advantages of GAMS is that the computer code uses the same format as the 
mathematical statement of the optimization problem. 
 
 LINDO, LINGO and "What's Best!" by Lindo Systems Inc. solves both LP and MILP 
problems. The formulation of models is straightforward, and the user has to list all the constraints 
one by one. This gets tedious if the constraints in the model are expressed in the summation form 
because, then each constraint will have to be separately written for the above three solvers. 
Nevertheless, these solvers are very convenient to use for small problems. 
 
MILP Approach in Batch Plant Scheduling 
 
 Scheduling of batch plant operation is a very important application of mixed integer linear 
programming according to Mah [8], and typically production rate of up to 25 million pounds per 
year are done in batch plants. Products such as pharmaceuticals, fermentation products, paints, 
plastics and food products are manufactured in batch processes. 
 
 A batch plant may be used to produce a single product or multiple products using the same 
set of equipment. Several products need the same processing steps that pass through the same 
series of processing units, and these are called multiproduct plants. As batches of different products 
require different processing times, the total time required to produce a set of batches depends on 
the sequence in which they are produced. Hence, it is crucial to schedule the batch operations in 
such a way so as to maximize plant productivity by minimizing the total time required to complete 
the entire set of operations (called the makespan). 
 
 Multiproduct batch plant scheduling problems can be solved using mixed integer linear 
programming. Problems of this type can be considered to be consisting of two interlinked 
subproblems. The first one is the determination of the order in which the products are to be 
produced, and the second subproblem deals with the determination of the start and finish times of 
each product on all processing units. The final plant schedule corresponding to a sequence is then 
represented in the form of a Gantt chart [8]. 
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Optimal Multi-Batch Batch Scheduling 
 
 As an example, the unit processing times for a 4-product, 3-stage flow shop are shown in 
Table 6-1. The Gantt chart in Figure 6-9 shows one of the possible schedules for the sequence of 
jobs.  From this chart, we see that in Unit 1, there is a wait (holding) time of 5-unit times for 
product 3. This is because Unit 2 is not yet ready to accept output from Unit 1.  Therefore, Unit 1 
has to hold product 3 until Unit 2 is ready to accept it. This holding time is shown by the shaded 
area in the Gantt Chart. Similarly, product 2 in Unit 2 has to wait for 3-time units before Unit 3 
becomes ready. The total time required (makespan) for this particular sequence is 27-time units. 
This is just one of the possible job sequences, and it may be far from optimal. The formulation of 
this kind of MILP problem involves representing the batch plant scheduling configurations in 
terms of mathematical equations that are expressed below (8). 
 
Table 6-1 Unit Processing Times for a Four Product, Three-Stage Flow Shop 
   
 UNIT  P1  P2  P3  P4 
 1  5  3  2  5 
 2  3  4  3  4 
 3  7  2  7  3 
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 A description of this scheduling problem can be formulated as a MILP.  Let N be the 
number of products and M be the number of processing units or stages in a plant. As shown in the 
Gantt Chart in Figure 6-11, a product i (i = 1..., N) can occupy only one slot j (j = 1..., N) in each 
unit k (k = 1..., M). This can be expressed mathematically by defining a binary variable yij such 
that: 
   yij =   1, if product i is placed in slot j in the sequence    (6-14) 
  0, otherwise  
 
The constraint that ensures that each product i is assigned to exactly one position j in the sequence 
is given by: 
        N 
 yi1 + yi2 + yi3 + … + yiN = 1   or            S yij = 1   for  i = 1, …, N (6-15) 
       j=1 
 
Similarly, the constraint that ensures that each position in the product sequence is assigned to only 
one product is given by: 
 
        N 
 y1j + y2j + y3j + … + yNj = 1   or            S yij = 1   for  j = 1, …, N (6-16) 
       i=1 
Let Cik be the completion time i.e., the time at which the ith product leaves unit k after completion 
of its processing. Here, ith product means the product in slot i.  
 
Let the processing time PTik be the time required to process the ith product in unit k. Now, the ith 
product cannot leave unit k until it is processed and in order to get processed, it must have left unit 
(k-1).  
 
Thus, the completion time for product i in unit k i.e., Cik must be at least equal to its completion 
time of unit (k-1) plus its processing time (PT) in unit k. This can be represented as: 
 
 Cik  ≥  Ci(k-1) + PTik,         for  i = 1,… N    and k = 2 ... M (6-17a) 
 
Equation 9-17a was formulated under the condition that there is at least one unit before unit k and 
the limits of k are from 2 to M.  
 
Similarly, ith product cannot leave unit k until (i - 1)th product has been processed, and the former 
has been processed. Therefore, 
 
 Cik  ≥  C(i-1)k + PTik,         for  i = 1,… N   and  k = 1, M  with  C0k = 0         (6-17b) 
 
Finally, the ith product can leave unit k only when unit (k +1) is free i.e., when the (i - 1)th 
product in unit (k+1) has left. This can be represented as: 
 
  Cik  ≥  C(i-1)(k+1)                for i = 1, … N;      k = 1,… M   (6-17c) 
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From Equation 6-17(c), it implies that Ci(k-1)  ≥  C(i-1)k (substituting k = k - 1) into Equation 9-17c.  
Equations 6-17(a) and 6-17(c) imply 6-17(b) for k = 2, …M.  Now: 
 
  Cik  ≥  Ci(k-1) + PTik  ≥  C(i-1)k + PTik.  
 
Therefore, Equation 6-17(b) for k = 2, …M are redundant, and Equation 6-17(c) is given for k = 
1 only. 
 
Let tik be the processing time for product i. Now, if product i is in slot j, then PTjk must be tik. 
Also, for a given unit k, product i can be in only one slot. Thus, yij can be used to pick the right 
processing time representing PTjk. This can be represented mathematically as: 
         
 PTik = y1i t1k +  y2i t2k + y3i t3k + … + yNi tNk     
 
or        
  N 
 PTik =  S  yji tjk  for i = 1, … N  k = 2, … M      (6-18) 
  j=1 
  
  
  
  
  
  (9-18) 
Substituting Equation 6-18 into Equation 6-17a gives: 
 
    N 
  Cik  ≥  Ci(k-1) +  S  yji tjk   for i = 1, … N  k = 2, … M       (6-19) 
    j=1 
 
The MILP for the batch-scheduling problem is: 
 
Minimize:   CNM          (6-20a) 
    N 
Subject to: Cik  ≥  Ci(k-1) +  S  yji tjk   for i = 1 … N  k = 2 … M      (6-20b) 
    j=1 
    N 
  Ci1  ≥  C(i-1),1 +  S  yji tj1   for   k = 2 … M        (6-20c) 
    j=1 
  Cik  ≥  C(i-1)(k+1)           for i = 1, … N;      k = 1, …M-1  (6-20d) 
 
  N 
  S yij = 1    for i = 1, …, N       (6-20e)  
  j=1 
 
   N 
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  S yij = 1    for j = 1, …, N       (6-20f)  
   i=1 
 
  Cik ≥ 0, and yij binary  
 
 These equations represent batch plant scheduling problems in which the objective is to find 
the optimal scheduling sequence for various jobs in order to minimize the makespan, the 
completion time CNM. Equation 6-15 ensures that each product i is assigned to exactly one position 
j. Equation 6-16 ensures that each product sequence is assigned to only one product. Equation 6-
17a ensures that the completion time for product i in unit k, Cik, is greater than or equal to the 
completion time of the prior units Ci(k-1) and the processing time of product i in unit k, PTik.  
Equation 6-17b ensures that the completion time for product i in unit k, Cik, is greater than or equal 
to the time for the product completion time product of (i - 1)th has and the processing time of 
product i in unit k, PTik.  These constraints describe the minimum completion times of processing 
of a particular product i in slot j and unit k. 
 
 Additional extensions of the batch processing MINLP by Mah (8) and Ku (14) include 
limited intermediate storage, no intermediate storage, finite intermediate storage, mixed 
intermediate storage, and zero weight. A systematic method for batch processing scheduling with 
limited resources is described by Ku and Karimi (15).  A review of continuous-time versus 
discrete-time approaches for scheduling of chemical processes is given by Floudas and Lin (16) 
 
 An example of a no intermediate storage problem given by Karimi in CACHE- Process 
Design Case Studies, Vol. 6 (6) is described below.  A GAMS program for the solution is given 
in the CD with the Case Studies (6).  
 
Example of a Multiproduct Batch Plant Scheduling Problem 
 
A multiproduct plant wishes to produce four products (P1 - P4) in batches. Each product requires 
three processing steps that are carried out by three batch units. The processing times of each 
product for the three units is given in Table 9-2.  

 
Table 9-2. Processing Times (hours) of products, after Karimi [6]. 

      Products 
  Units     P1  P2  P3  P4 
   1  3.5  4.0  3.5  12.0 
  2  4.3  5.5  7.5  3.5 
  3  8.7  3.5  6.0  8.0 
 
There is no storage facility is available between the processing units which means that unit 'k' has 
to hold a product that it has processed until unit 'k+1' becomes free. However, products that have 
been processed by the last unit are immediately sent to the storage unit.  
 
A unit can begin processing a product immediately after it has finished processing the previous 
product and has sent it to the next unit. Also, the time required to transfer products from one unit 
to the next is negligible compared to the processing times.  
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The units are ready to begin processing at time zero and the production of any product can begin 
at any time. The objective is to find a sequence of producing the four products in order to minimize 
the makespan.  
 
For the MILP formulation, the total number of products is N = 4, and the number of processing 
units is M=3 with binary variables (yij) and continuous variables (Cik). 
 
The solution of this problem has been obtained using the GAMS program from the CD with the 
Case Studies (6) that is given in Table 6-3.  GAMS compilers users manuals and related 
information are available on the GAMS web site, GAMS.com. 
 
Table 6 -3. GAMS Program for the Batch Scheduling Problem, after Karimi [6]. 
 
$TITLE Multiproduct Batch Plant Scheduling 
* Define product and unit index sets 
SETS PI Product batches to be produced /p1*p4/ 
     UK Four batch processing units in the plant /u1*u3/ 
      J Slots for products in the sequence /1*4/; 
ALIAS (I, J); 
* Define and initialize problem data 
TABLE T(PI,UK) Processing times of products on unit UK in hours 
             u1    u2   u3 
     p1      3.5   4.3  8.7 
     p2      4.0   5.5  3.5 
     p3      3.5   7.5  6.0 
     p4      12.0  3.5  8.0 
PARAMETER TMIN(UK) Minimum of the processing times of products on UK; 
          TMIN(UK) = SMIN(PI, T(PI,UK)); 
PARAMETER TP(PI,UK) Processing times of products above TMIN on UK; 
          TP(PI,UK) = T(PI,UK) - TMIN(UK); 
SCALAR N Number of products to be produced 
       M Number of units in the plant; 
       N = CARD(PI); 
       M = CARD(UK); 
* Define optimization variables 
VARIABLES X(PI,J) Product PI is in sequence slot J 
          C(I,UK) Completion time of the product in sequence 
                  slot I on unit UK 
          MSPAN Makespan or total time to produce all products; 
POSITIVE VARIABLES C; 
BINARY VARIABLES X; 
* Define constraints and objective function 
EQUATIONS OBJFUN Minimize makespan 
          ONEPRODUCT(J) Only one product should be in each slot 
          ONESLOT(PI) Only one slot should be assigned to each product 
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          CEQ1(I,UK) Completion time recurrence 9-20c 
          CEQ2(I,UK) Completion time recurrence 9-20b 
          CEQ3(I,UK) Completion Time recurrence 9-20d; 
OBJFUN.. MSPAN =E= SUM((I,UK) $(ORD(I) EQ N AND ORD(UK) EQ M), C(I,UK)); 
ONEPRODUCT(J).. SUM(PI, X(PI,J)) =E= 1; 
ONESLOT(PI)..    SUM(J, X(PI,J)) =E= 1; 
CEQ1(I,"u1")..  C(I,"u1") =G= C(I-1,"u1") $(ORD(I) GT 1) +  
                         TMIN("u1") + SUM(PI, TP(PI,"u1")*X(PI,I)); 
CEQ2(I,UK) $(ORD(UK) GT 1).. 
    C(I,UK) =G= C(I,UK-1) + TMIN(UK) + SUM(PI, TP(PI,UK)*X(PI,I)); 
CEQ3(I,UK) $(ORD(I) GT 1 AND ORD(UK) LT M).. C(I,UK) =G= C(I-1,UK+1); 
* Define model and solve 
  MODEL SCHEDULE /ALL/; 
  SOLVE SCHEDULE USING MIP MINIMIZING MSPAN; 
DISPLAY X.L, C.L, MSPAN.L; 
 
The first command in the GAMS program in Table 6-3 (also called the directive) is TITLE that 
causes every page of the output solution to contain the title that has been specified with this 
directive. For this example, the title is "Multiproduct Batch Plant Scheduling" and this would 
appear on each page of the output solution. This directive is preceded by the '$' sign and hence 
these are called the Dollar Control Directives. Such directives are put in the input file to control 
the appearance and amount of detail in the output produced by the GAMS compiler. Also, any text 
that follows the asterisk '*' is treated as a comment by the compiler and hence ignored. The entire 
problem follows the GAMS model, the basic components of which are explained below. 
 
SETS: These form the basic building block of a GAMS model and they correspond to the indices 
in the algebraic representation of models. In the example problem, PI, UK and J are the indices for 
the product batches, processing units and slots for products respectively. The values for these sets 
are enclosed within the slashes. For example, for the SET J, the number of slots is four and hence 
the number within the slashes are /1*4/ which is the concise way of writing, instead of writing /1, 
2, 3, 4/. The next statement, ALIAS, is used to give another name to a previously declared set. 
 
DATA: The next component of the GAMS model is DATA that consists of TABLES,  
 
PARAMETERS AND SCALARS: In this component, all the input data is entered. Table 2 is 
entered in the TABLE section with the name T(PI,UK). In the PARAMETERS section, T(PI,UK) 
= TMIN(UK) + [T(PI,UK) - TMIN(UK)] where TMIN(UK) is the minimum processing times of 
products on unit UK. This not only increases the sparsity of the formulation, but also reduces the 
coefficients of the binary variables, thereby making the problem easier to solve (6). The SCALAR 
statement is used for variables that can have only single values. The function CARD() returns an 
integer value which corresponds to the number of elements in the set. The statement N = 
CARD(PI) assigns the value 4 to N. 
 
VARIABLES: This component consists of all the decision variables of the GAMS model. Once 
the variables are declared, they must be assigned the type i.e. either POSITIVE, NEGATIVE, 
INTEGER, BINARY or FREE. Here, 'C' is a positive variable and 'X' is a binary variable. The 
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variable that represents the quantity to be optimized must be a scalar and must be of the FREE 
type which means that the range of the variable is from -∞ to +∞. 
 
EQUATIONS:   This component of the GAMS model declares and defines all the equations of the 
problem. All equations are first declared and then defined in separate statements. GAMS has 
several notations to simplify complex equations. One of them is the summation notation which has 
two arguments: SUM(index of summation, summand). The command ORD() gives the position of 
an element in the set. The Dollar '$' operator is used for introducing specific conditions in the 
equations. For example, X$(Y EQ 5) = 8 implies that the value 8 is assigned to X only if Y is equal 
to the value 5. Such notations and commands are helpful to greatly simplify equations that are 
complex. 
 
MODEL: This statement means that it is a group of equations. The format of this statement is the 
keyword MODEL followed by the model's name, followed by the list of equation names to be 
considered and enclosed in slashes. If all equations are to be considered for the solution, then 
"/ALL/" can be entered to represent the entire list of equations. 
 
SOLVE:  This statement is used to solve the model. The format sequence of the SOLVE statement 
is as follows: 
 1. The keyword "SOLVE". 
 2. Model name. 
 3. The keyword "USING". 
 4. The solution procedure available, like "LP", "NLP", ”MIP", etc., 
 5. The keyword "MAXIMIZING" or "MINIMIZING". 
 6. The name of the variable to be optimized. 
 
DISPLAY:   This final statement is used to display values of specific variables at the output. 
 
A section of the output solution obtained by solving the input program on GAMS is shown in 
Table 4. It gives the summary of the solution process. The minimum makespan obtained, which is 
given by the objective value is 34.8 hours. 
 
Table 6-4. GAMS Output for Optimal Solution to the Batch Plant Scheduling Problem from 
Karimi[6]. 
 
Multiproduct Batch Plant Scheduling 
Solution Report     SOLVE SCHEDULE USING MIP FROM LINE 53 
               S O L V E      S U M M A R Y 
     MODEL   SCHEDULE         OBJECTIVE  MSPAN 
     TYPE    MIP                      DIRECTION  MINIMIZE 
     SOLVER  ZOOM                FROM LINE  53 
**** SOLVER STATUS     1 NORMAL COMPLETION          
**** MODEL STATUS      1 OPTIMAL                    
**** OBJECTIVE VALUE               34.8000 
 RESOURCE USAGE, LIMIT           2.090    1000.000 
 ITERATION COUNT, LIMIT       164         1000 
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**** REPORT SUMMARY :        0  NONOPT 
            0  INFEASIBLE 
            0  UNBOUNDED 
 
----     55 VARIABLE  X.L           Product PI is in sequence slot J 
             1           2           3           4 
P1       1.000 
P2                                           1.000 
P3                   1.000 
P4                               1.000 
----     55 VARIABLE  C.L           Completion time of the product in sequence 
           U1          U2          U3 
1       3.500       7.800      16.500 
2       7.800      16.500      23.300 
3      19.800      23.300      31.300 
4      23.800      31.300      34.800 
----     55 VARIABLE  MSPAN.L    =   34.800 Makespan or total time to produce all products 
 
The final values of the binary variables are listed in the form of a table that shows the job sequence. 
Here, y11, y24, X32, and X43 have a value '1'. This means that product 1 has been allotted slot 1, 
product 2 has been allotted slot 4, product 3 has been allotted slot 2 and product 4 has been allotted 
slot 3. Thus, the final sequence in which the products will be produced to minimize the makespan 
is P1-P3-P4-P2. 
 
Next, the completion time for each process in each unit is listed. C43 is the makespan and is equal 
to 34.8. From this table, the Gantt chart can be drawn. Finally, the value of the variable MSPAN 
that corresponds to the makespan is given. 
 
Closure 
 
 In this chapter, mixed integer linear programming was described along with its special 
cases. First, the mathematical structure of MILP was introduced and then some perspective was 
given on solving integer-programming problems. The branch and bound technique for solving 
mixed integer problems was then described along with an algorithm to solve general integer 
problems using this technique. The use of this algorithm was illustrated by solving an example. 
Later, a binary integer problem was solved in a similar but different way, but essentially using the 
same technique. The purpose was to show that binary integer programming problems could be 
solved by an efficient and faster method.  Then mixed integer programming was introduced, and 
a problem was solved using the branch and bound technique. Finally, the MILP approach in batch 
plant scheduling was explained with the help of an example, and equations were derived to 
formulate such problems. Finally, the chapter closed by applying these equations to construct a 
mathematical model of a multiproduct batch plant scheduling problem whose solution was 
obtained using GAMS. Both, the GAMS code and solution for the problem were discussed. 
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Problems  
 
6-1.  During the maximization of the following integer programming problem after S. I. Gass 
(17), the following subsets were obtained. 
    maximize: P(x) = 2x1 + 5x2 
    subject to: 2x1 - x2 ≤ 9 
      2x1 + 8x2 ≤ 31 
      xj ≥ 0 and integer 
Subsets (not in order)     
x1 ≤ 5, x2 ≤ 2 x = (5, 2)      P = 20 
x1 ≤ 5, x2 ≥ 0 x = (5, 2.625)      P = 23.125 
x1 ≥ 0, x2 ≥ 0  x = (5.722, 2.44)  P = 23.66 
x1 ≥ 6, x2 ≥ 0 Infeasible      P =  - 
x1 ≤ 5, x2 ≥ 3 x = (3.5, 3)      P = 22   
      
    Start    LP Relaxation Solution 
     P =   ___________ 
     x = ( _____, _____ )  
 
   _____________________|_____________________ 
   |       | 
 
  x1 < _______      x1 > _______ 
  P = _______      P = _______ 
   x = ( _____, _____ )     x = ( _____, _____ ) 
 
   | 
  __________________________________________ 
  |       | 
  
 x1 < _______      x1 < _______ 
 x2 < _______      x2 > _______ 
 P = _______      P = _______ 
    x = ( _____, _____ )     x = ( _____, _____ ) 
 
 
a.  Place the subset solutions on the branch and bound tree given above. 
b.  Write on the diagram all nodes that have been fathomed and explain why. 
c.  Write on the diagram the node that has not been fathomed and explain why. 
d.  Give the upper and lower bounds at this point in the solution. 
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6-2.  Consider the following integer programming problem after Wolsey (18). 
 
      Max:   4x1 - x2    = P 
     Subject to:   7x1 - 2x2     < 14  
              2x1 - 2x2    < 3 
             x2   < 3 
              x1,  x2 > 0  integers 
 
The above integer-programming problem was solved using the branch and bound algorithm.  The 
constraints and the LP relaxation solution of all of the subproblems on the branches are listed 
below. 
 
         Constraints              LP Solution for Subproblems             
        x2 < 3   x = (2 6/7, 3)  P= 8 3/7 LP relaxation solution 
         x1 < 2   x2 < 3 x2 > 1   x = (2, 1)  P= 7 
     x1 < 2   x2 < 3       x = (2, 1/2 )  P= 7 1/2 
     x1 < 2   x2 < 3 x2 < 0   x = (1 ½, 0)  P= 6 
 x1 > 3 x2 < 3    x = (infeasible) P=  - 
 
 
a.  From the LP solutions of the subproblems given in the table below, complete the branch and 
bound tree.  Add subscripts to the x’s and values used for branching to each subproblem on the 
attached diagram.  All of the places for subproblems are not needed. 
 
b.  Write on the diagram the reasons for fathoming each subproblem. 
 
c.  Describe the procedure to locate and give the upper and lower bounds using a breadth-first 
strategy. 
 
      Start LP Relaxation Solution 
      P= 8 3/7 
      x = (2 6/7, 3)    

_____________________|_____________________ 
|       | 

     
   x  <         x  >  
   P =       P = 
   x = (              )      x = (              ) 
   |       | 
  __________________   __________________ 
  |   |   |   |  
  
   x  <   x  <           x  >   x >  
   x  <   x  >           x  <   x > 
 P =   P =    P =    P = 
 x = (       )  x = (       )   x = (       )  x = (       ) 
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6-3.  Consider the following integer programming problem after Harley (13). 
 
    Max:  3x1 + 4x2  + 7x3  = P 
      Subject to:    x1 + 3x2  + 6x3 < 13  
              2x1 + 3x2  + 4x3 < 13 
              x1, x2, x3 > 0  integer 
 
The above integer-programming problem was solved using the branch and bound algorithm.  The 
constraints and the LP relaxation solution of all of the subproblems on the branches are listed 
below. 
 
a.  From the given LP solutions of the subproblems, complete the branch and bound tree and 
write the constraints added to each subproblem on the attached diagram. 
 
b.  Give the reasons for fathoming each subproblem.  Write this on the diagram. 
 
c.  Describe the procedure to locate and give the upper and lower bounds at each branch using a 
breadth-first strategy and to locate the maximum. 
 
 Constraints                 LP Solution for Subproblems             
      x1 > 0       x2 > 0       x3 > 0  x = (31/4, 0, 15/8) P= 211/8   LP relax soln 
3 > x1 > 0       x2 > 0        x3 > 0  x = (3, 1/3, 11/2 ) P= 205/6 
3 > x1 > 0       x2 > 0   1 > x3 > 0  x = (3, 1, 1)  P= 20 
3 > x1 > 0       x2 > 0         x3 > 2  x = (1, 0, 2)  P= 17 
      x1 > 4       x2 > 0         x3 > 0  x = (4, 0, 11/4)  P= 203/4 
      x1 > 4       x2 > 0   1 > x3 > 0  x = (41/2, 0, 0)  P= 201/2 
     x1 > 4       x2 > 0          x3 > 2  x = (infeasible) -- 
4 > x1 > 4       x2 > 0   1 > x3 > 0  x = (4, 1/3, 1)  P= 201/3 
4 > x1 > 4 > 0  x2 > 0   1 > x3 > 0  x = (4, 0, 1)  P= 19 
4 > x1 > 4       x2 > 1   1 > x3 > 0  x = (4, 1, 1/2)  P= 191/2 
      x1 > 5       x2 > 0   1 > x3 > 0  x = (5, 0, 3/4)   P= 201/2 
      x1 > 5       x2 > 0   0 > x3 > 0  x = (61/2, 0, 0)    P= 191/2 
      x1 > 5       x2 > 0   1 > x3 > 1  x = (infeasible) -- 
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      Start LP Relaxation Solution 
      P = 21 1/8  
      x = (3 1/4, 0, 1 5/8)      
   _____________________|_____________________ 
   |       | 
 
 x1 < 3         x1  > 4 
 P =         P = 
 x = (              )        x = (              )  
___________|_____________    ____________|____________ 
|    |    |    | 
 x             x           x            x 
P =             P =    P =             P = 
x = (           )          x = (            )   x = (             )           x = (            ) 
             
     ________________|____________________ 
     |      | 
               x                x 
     P =                P = 
      x = (          )               x = (           ) 
  _______|___________   ____________|______ 
  |   |   |   |   
   x           x          x                    x 
           P =   P =          P =            P =            
  x = (            )  x = (           )         x = (           )           x = (            ) 
   
 
    ZU upper bound      ZL   lower bound 
Start    
1st Branch   
2nd Branch   
3rd Branch   
4th Branch   
Maximum: P =        x = (      ,       ,      ) 
 
6-4.  Consider the following integer programming problem that has three binary variables, y1, y2, 
and y3.   
 
 Max:          3y1 +  2y2 +  3y3 = P 
  Subject to:       y1 +   y2 +   y3    > 2 
             5y1 + 3y2 + 4y3  < 10 
      y1, y2, y3 = 0,1 
 
This problem was solved using the branch and bound algorithm.  The LP relaxation solution and 
subproblems formed from this solution by adding constraints are given in the following table.  
These solutions are not in any particular order. 
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 Constraints added  Subproblem Solutions   
 for subsets   y1 y2 y3 P 
 LP relaxation   0.6 1 1 6.8 
 y1 = 1,  y2 = 0   1 0 1 6 
 y1 = 1,  y2 = 1 y3 = 0  1 1 0 5 
 y1 = 1,  y2 = 1   1 1 0.5 6.5 
 y1 = 1    1 0.33 1 6.67 
 y1 = 1, y2 = 1, y3 = 1  1     1 1 infeasible 
 y1 = 0    0 1 1 5 
 
a. Write the LP relaxation and subset solutions on the attached branch and bound diagram. 
 
b. Write on the diagram the reason that each node is fathomed. 
 
c. Give the upper and lower bounds at each level, and show that this locates the maximum. 
 

Start LP relaxation 
ZU = ______    P = ______ 
ZL = _____     y1 = ____ y2 = ____ y3 = ____ 
   _____________________|_____________________ 
   |       | 
 
ZU = ______  y = ____    y = ____ add subscripts to y’s 
ZL = _____   P = ____    P = ____ 
   y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____ 
   fathomed ________________ 
     _______________________________|___________ 
     |       | 
ZU = ______  y = ____    y = ____   add subscripts to y’s 
ZL = _____   y = ____    y = ____ 
   P = ____    P = ____ 
   y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____ 
   fathomed _______________   
     _______________________________|__________ 
     |       | 
ZU = ______  y = ____    y = ____        add subscripts to y’s 
ZL = _____   y = ____    y = ____ 
   y = ____    y = ____ 
   P = ____    P = ____ 
   y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____ 
   fathomed _______________  fathomed _______________ 
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6-5.[3] During the maximization of a pure integer programming problem by the branch and 
bound algorithm, the following branch and bound tree is obtained at a certain stage. 
                               

LP1 
z = 100 (C.S) 

┌────────────────────┐ 
LP2                                             LP3 

         z = 85 (C.S)                                      z = 91 (C.S) 
┌──────────────┐               ┌────────────┐ 

         LP6                                 LP7    LP4                  LP5 
   z = 70 (I.S)           z = 79 (C.S)    z = 60 (I.S)          z = 75 (C.S) 

┌─────────────────┐ 
LP8                LP9 

Infeasible solution       z = 65 (C.S) 
 
Note: C.S = continuous solution, I.S = Integer solution. 
 
a.  What is the best upper bound on the maximum value of z for the integer program at this 
stage? 
b.  What is the best lower bound on the maximum value of z? 
c.  Indicate all the node(s) that have been fathomed and explain why. 
d.  Identify the node(s) that have not been fathomed and explain why not. 
e.  Has an optimal solution to the integer program been obtained at this stage? Explain. 
f.  What is the maximum absolute error on the optimal value of z if the branch and bound 
algorithm is terminated at this stage? What is the fractional error as a percentage of worst-case 
optimum? 
 
6-6. Several integer-programming problems are given below. The branch and bound solutions 
are given in References 2,5, and 11. 

  Maximize:   z(x) = 3x1 + 13x2 
  Subject to:  2x1 + 9x2 ≤ 40 
    11x1 - 8x2 ≤ 82 
     x1, x2, non-negative integers 
 
  Maximize:   z(x) = 6x1 + 3x2 + x3 + 2x4 
  Subject to:  x1 + x2 + x3 + x4 ≤ 8 
    2x1 + x2 + 3x3 ≤ 12 
    5x2 + x3 + 3x4 ≤ 6 
     x1 ≤ 1, x2 ≤ 1, x3 ≤ 4, x4 ≤ 2 
     x1, x2, x3, x4 non-negative integers. 
 
     Maximize:   z(x) = 10x + 20y 
   Subject to:   5x + 8y ≤ 60 
    x ≤ 8, y ≤ 4 
      x, continuous variable y, non-negative integers. 
    The LP-relaxation of this problem is x = 5.6, y = 4 with z = 136.  
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  Minimize:   z(x) = x1 - 2x2 
   Subject to:   2x1 + x2 ≤ 5 
    -4x1 + 4x2 ≤ 5 
      x1, x2, non-negative integers. 
 
  Minimize:   z(x) = 8x1 + 15x2 
   Subject to:   10x1 + 21x2 ≤ 156 
      2x1 + x2 ≤ 22 
      x1, x2, non-negative integers. 
   
  Maximize:   z(x) = -x1 + 15x2 
  Subject to:   -x1 + 10x2 ≤ 10 
      x1 + x2 ≤ 6 
      x1, x2, non-negative integers. 
  
  Maximize:   z(x) = 9x1 + 6x2 + 5x3 
  Subject to:  2x1 + 3x2 + 7x3 ≤ 35/2 
     4x1 + 9x3 ≤ 15 
      x1, x2, x3, non-negative integers. 
 
  Maximize:   z(x) = 2x1 + 3x2 + x3 + 2x4 
   Subject to:  5x1 + 2x2 + x3 + x4 ≤ 15 
    2x1 + 6x2 + 10x3 + 8x4 ≤ 60 
     x1 + x2 + x3 + x4 ≤ 8 
     2x1 + 2x2 + 3x3 + 3x4 ≤ 16 
     x1 ≤ 3, x2 ≤ 7, x3 ≤ 5, x4 ≤ 5 
     x1, x2, x3, x4 non-negative integers. 
 
  Minimize:   z(x) = -2x1 - 10x2 - x3 
  Subject to:   5x1 + 2x2 +  x3 ≤ 7 
     2x1 +  x2 + 7x3 ≤ 9 
      x1 + 3x2 + 2x3 ≤ 5 
      xj = 0 or 1, j = 1...,3. 
   
  Minimize:   z(x) = 2x1 + 4x2 - 5x3 + 7x4 
   Subject to:    x1 + 2x2 + 3x3 + 3x4 ≤ 8 
    -2x1 + 3x2 +  x3 + 2x4 ≥ 2 
      xj = 0 or 1, j = 1...,4. 
   
  Minimize:   z(x) = -2x1 - 4x2 - 6x3 - 8x4 
  Subject to:    x1 + 2x2 - x3 + x4 ≤ 5 
    -2x1 + x2 + x3 ≥ 2 
      xj = 0 or 1, j = 1,..4. 
   
  Minimize: z(x) = 2x1 + 3x2 - 4x3 + 7x4 
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  Subject to:  x1 - 2x2 + x3 - 4x4 ≥ 1 
     x1 - 2x2 + 2x3 - x4 ≤ 1 
     xj = 0 or 1, j = 1,..,4. 
 
  Maximize:   z(x) = 9x1 + 6x2 + 5x3 
  Subject to:   2x1 + 3x2 + 7x3 ≤ 35/2 
     4x1 + 9x3 ≤ 15 
      x1 ≥ 0 and integer 
 
  Maximize:  z(x) = 4x1 - 2x2 + 7x3 - x4 
  Subject to:   -x1 + 2x3 - 2x4 ≤ 3 
      x1 +  x2 -  x3 ≤ 1 
     6x1 - 5x2 ≤ 0 
      x1 + 5x3 ≤ 10 
      xj ≥ 0 for j = 1,..,4. 
      xj is an integer for j = 1, 2, 3. 
 

6-7. (11) A hiker decides to go on a camping trip, and he does not wish to carry more than 60 
pounds in his pack, but on laying out his equipment he finds its total weight to be 90 pounds. 
There are three objects he wants to take, so in order to decide which combination is best, he 
attaches a value to each so that he can take those objects which amounts to a maximum value. 
Suppose his data are: 
  Object  Value  Weight  Value/Weight 
    1    70    40     1.75 
    2    50    30     1.67 
    3    30    20     1.5 
As seen in the data, he has listed the objects in order of decreasing value-to-weight ratio. 
Formulate an integer-programming model to solve this problem. What is the solution by 
applying the largest-ratio rule? 
 
6-8.  (12) Seventy-five hundred soldiers are to be transported across the Mediterranean sea. 
The army has hired the services of a shipping company that owns two types of ships. The 
attributes for the two ships are shown below: 
      Type 1  Type 2 
 Capacity, in soldiers     2,000  1,000 
 Gallons fuel consumption/trip  12,000  7,000 
 Crew size, in men       250     100 
 
Only 55,000 gallons of fuel and 900 crewmen are available. The army will pay the shipping 
company $20,000 for each ship of Type 1 employed and $10,000 for each ship of Type 2 
employed.  
 
Formulate the problem as an integer-programming problem if the objective is to maximize the 
revenue without violating the fuel and crew constraints? Assume that the shipping company has 
an ample supply of both types of ships. 
 



 

 315 

Repeat the problem with the addition of the following constraints: 
 
    If any Type 2 ships are to be employed, a special cost of $2,000 is incurred, but not otherwise. 
 
    If more than two Type 2 ships are employed, an additional cost of $1000 will be incurred since 
 some schedule changes will become necessary. 
 
6-9. (3) It is required to produce 2000 units of a certain product on three different machines. The 
set-up costs, the production costs per unit, and the maximum production capacity for each 
machine are given below: 
 
Machine Set-up Cost($)    Machine Capacity Production Cost 
    1  $100   600 units           $10 per unit for the first 300 units 
                 $7 per unit for the remaining 300 units 
  
2     $500   800 units  $2 per unit for all 800 units 
  
3     $300   1200 units  $6 per unit for the first 500 units 
        $4 per unit for the remaining 700  
         units 
 
Formulate the problem as an integer-programming problem if the objective is to minimize the 
total cost of producing the required lot.  
 
6-10. (12) Three ships are to be unloaded at a certain dock in which four berths are available. 
The time required for unloading (in days) depends on the ship's cargoes and the unloading 
facilities at each berth. This data showing the days of unloading time is shown below: 
 
   Ship 1 2 3 
     Berth 
       1   5 13 19 
       2  13 10 15 
       3  11 15 27 
       4  15  9  6 
 
Formulate the integer problem to find the optimal assignment of ships to berths so as to minimize 
the total ship-days of unloading time. 
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6-11. (12)  There are three warehouses A, B, and C from which supplies have to be shipped to 
four distributors D, E, F, and G. The various specifications are given below: 
 Data: 
 Supplies available: 
 A: 36 
 B: 28 
 C: 16 
 Distributor requirements: 
 D: 5 
 E: 10 
 F: 35 
 G: 25 
 The unit shipping costs from the warehouse to the distributors: 
  D E F G 
 A $5 $9 $5 $7 
 B 6 8 5 10 
 C 7 9 13 5 
 
Formulate the problem as an integer-programming problem to find an optimal distribution that 
minimizes the total transportation cost, satisfies the distributor's needs and does not exceed the 
warehouse's supply. 
 
Solutions to Selected Problems 
 
6-1 Solution 
 

 

    Start    LP Relaxation Solution 
     P = 23.66 
     x = (5.72, 2.44) 
   _____________________|_____________________ 
   |       | 
   x1 < 5       x1 > 6 
   P = 23.125      P =   - 
    x = (5, 2.625)      x = ( -, -) 
          Fathomed – infeasible 
   | 
  __________________________________________ 
  |       | 
 
  x1 < 5       x1 < 5 
  x2 < 2       x2 > 3 
  P = 20       P = 22 
     x = (5, 2)      x = ( 3.5, 3) 
  Fathomed - integer solution    Not fathomed - profit greater  
         that lower bound 
     Upper bound    22  Lower bound    20 
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6-2 Solution 
 

 
 

a.  From the given LP solutions of the subproblems, complete the branch and bound tree.   
  
     Start LP Relaxation Solution 
     P= 8 3/7     
     x = (2 6/7, 3)    

_____________________|_______________ 
|      | 

   x1 < 2      x1  > 3  Branch on x1  
   P = 7 1/2     P =  -              x1 < 2 
   x = (2, 1/2 )     x = (infeasible)  x1  > 3 
 
  ___________|_________________________ 
  |      |    
  x1 < 2              x1 < 2   Branch on x2 
  x2 < 0      x2 < 1    x2 > 1 
  P = 6      P = 7    x2 < 0 
  x = (1½, 0)     x = (2, 1) 
  Less than integer soln    Integer soln - maximum 
    
b. Reasons for fathoming each subproblem is on diagram. 
    
c.  Describe the procedure to locate and give the upper and lower bounds using a breadth-first 
strategy. 
    Zu    ZL    
Start   8 3/7  0 
1st Branch  7 1/2  0 
2nd Branch  7  7  upper bound Zu = lower bound ZL    
Maximum is: P = 7, x = (2, 1) 
 
The method has to proceed through two branches.  At the second level the values of P for the 
non-integer solution, P = 6, is less than the incumbent solution, P = 7.  
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6-3 Solution 
 

 
 

     Start 
    x = (3 1/4, 0, 1 5/8)    LP Relaxation Solution 
    P = 21 1/8 
 
   _____________________|_____________________ 
   |       | 
 
   x1 < 3       x1  > 4 
   P = 20 5/6      P = 20 3/4 
   x = ( 3, 1/3, 1 1/2 )     x = (4, 0, 1 1/4) 
  
 ___________|_____________   ____________|____________ 
 |    |   |    | 
 x3 < 1          x3 > 2          x3 < 1        x3 > 2 
 P = 20    P = 17   P = 20 1/2  P = - 
 x = (3, 1, 1)   x = (1, 0, 2)  x = (4 ½, 0, 0)  x =(infeasible) 
 integer solution   integer solution     infeasible 
         
     _____________________|_____________________ 
     |       | 
     x1 < 4                x1 > 5 
     P = 20 1/3     P = 20 1/2 
     x = (4, 1/3, 1)     x = (5, 0, 3/4) 
  _______|___________   ____________|______ 
  |   |   |   |   
    x2 < 0    x2 > 1    x3  < 0    x3 > 1 
  P = 19   P = 19 1/2  P = 19 1/2  P =  -    
  x = (4, 0, 1)  x = (4, 1, 1/2)  x = (6 ½, 0, 0)  x =(infeasible) 
   
less than lower bound       less than lower bound     less than lower bound         Infeasible 
 
    ZU    ZL    
Start   21 1/8  0 
1st Branch  20 5/6  0 
2nd Branch  20 1/2  20 
3rd Branch  20 1/2  20 
4th Branch  20  20 
Maximum is: P = 20  x = (3, 1, 1) 
 
The method has to proceed through four branches.  At the third level, values of P for non-integer 
solutions are greater than the incumbent solution for P = 20. 
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6-4 Solution 
 

 
 

Start LP relaxation 
 

ZU = 6.8   P = 6.8 
ZL = 0    y1 = 0.6   y2 = 1  y3 = 1   
   _____________________|_____________________ 
   |       | 
ZU = 6.67  y1 = 0      y1 = 1   
ZL = 5    P =    5      P = 6.67 
   y1 = 0   y2 = 1 y3 = 1    y1 = 1 y2 = 0.33  y3 = 1 
   fathomed: integer solution 
 
     ______________________________|____________ 
     |       | 
ZU = 6.5    y1 = 1      y1 = 1   
ZL = 6     y2 = 0      y2 = 1 
     P = 6      P = 6.5 
     y1 = 1  y2 = 0  y3 = 1  y1 = 1  y2 = 1   y3 = 0.5 
   fathomed: integer solution   
   optimal solution   
     ______________________________|____________ 
     |       | 
ZU = 6     y1 = 1      y1 = 1        
ZL = 6     y2 = 1      y2 = 1 
     y3 = 0      y3 = 1 
     P = 5      P =  -   
     y1 = 1   y2 = 1  y3 = 0   y1 =  -  y2 =  -   y3 =  -  
     fathomed: integer solution  fathomed: infeasible 
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6-5 Solution 
 

 

During the maximization of a pure integer-programming problem by the branch and bound 
algorithm, the following branch and bound tree is obtained at a certain stage. 
 

LP1 
P = 100 (C.S) 

┌────────────────────┐ 
LP2                                        LP3 

P = 85 (C.S)                                 P = 91 (C.S) 
     ┌──────────────┐                 ┌────────────┐ 

LP6                  LP7            LP4              LP5 
 P = 70 (I.S)               P = 79 (C.S)         P = 60 (I.S)       P = 75 (C.S) 
 integer solution        not fathomed  fathomed   greater than  

fathomed          lower bound 
    ┌─────────────────┐      

    LP8               LP9  
   infeasible solution  P = 65 (C.S)   
   fathomed   continuous solution 

      less than lower bound 
        fathomed 
Note: C.S = continuous solution, I.S = Integer solution. 
a. The upper bound on the maximum value of P for the integer program at this stage is 75. 
b. The lower bound on the maximum value of P is 70. 
c.  Nodes fathomed are: 
  LP6 P = 70 integer solution. 
  LP4 P = 60 integer solution 
  LP8 P = 60 infeasible solution 
  LP9 P = 65 continuous solution less than lower bound. 
d.  Node not fathomed is  LP5 P = 75 continuous solution greater than lower bound  
e.  The optimal solution to the integer program has not been obtained at this stage.  The optimal 
solution may be larger than P = 70 by branching on LP5 P = 75. 
f.  The bounds on the optimal value for P at this stage, i.e.,   75  > Popt >  


