

 262

Chapter 6

MIXED INTEGER LINEAR PROGRAMMING
Introduction

 There are linear programming problems that require integer values for some or all the
decision variables. For example, integer quantities are necessary for activities associated with
machines, vehicles or people. These problems with some of the variables having integer values are
known as Mixed Integer Linear Programming (MILP) problems. The use of integer variables
makes possible the formulation of models of many problems for which only an approximation was
available previously. Industrial applications of mixed integer programming include: flowsheeting
optimization, optimal scheduling of batch plants, heat and mass exchanger networks, multiphase
chemical equilibrium, blending in limited tanks, optimal feed location in distillation and reaction
path synthesis. Others include capital budgeting, most valuable mix and equipment scheduling.

 In this chapter, the mathematical representation of a mixed integer linear programming is
given to describe the mathematical structure of such problems. This is followed by an algorithm
to solve problems involving MILP, and its use is illustrated by solving a simple problem. A few
examples illustrating special cases of MILP are given also and explained in detail. Also, standard
computer codes are described for solving large MILP's. Finally, the important application of
optimal scheduling for a multi-product batch plant will be given, and this will include converting
this scheduling problem into a mixed integer mathematical model that is then solved using GAMS,
the General Algebraic Modeling System for optimization. The computer codes needed for
representing the problem as well as the output solution are detailed.

General Statement of Mixed Integer Linear Programming (MILP)

 MILP problems require maximizing or minimizing a function subject to linear equality or
inequality constraints with integer restrictions on some or all the variables. The mathematical
statement of mixed integer linear programming can be expressed as:

 (MILP) max {cx + hy: A + G ≤ b, x ∈ Rp+, y ∈ Zn+, } (6-1)

where Zn is a set of n dimensional vector of positive integers and Rp is a set of p-dimensional
positive real vectors. The variables or unknowns are x = (x1, . . ., xn) and y = (y1, . . ., yp). A and G
are m × n and m × p matrices respectively. The objective function is z = cx + hy with c and h being
n and p ordered vectors respectively [1].

 The MILP has two special cases: Linear Programming (LP) that has all continuous
variables and Integer Programming (IP) that has only integer variables. The mathematical
statement of an integer linear programming problem is the same as the linear programming model,
but with an additional restriction that the variables must take on integer values. It is expressed in
the following form in summation notation:

 263

 p
 minimize : z = Σ hjyj (6-2a)
 j=1
 p
 subject to: Σ gijyj < bi for i = 1,2, ..., m (6-2b)
 j=1
 yj ≥ 0, for j = 1, 2, ..., p

 yj integer, for j = 1, 2,, p

In matrix notation, after Equation 6-1, Equations 6-2a and 6-2b for IP are expressed as:

 (IP) max {hy: G ≤ b, y ∈ Zn+} (6-3)

The mathematical statement of linear programming problem after Equation (1) is:

 (LP) max {cx: A ≤ b, x ∈ Rp+} (6-4)

 As mentioned above, LP is considered to be a special case of MILP in which the variables
have no integer restrictions and can assume any positive real value. The deletion of the integer
restriction in a mixed integer problem reduces it to an ordinary linear program in which all the
variables are continuous, and this is used in algorithms to solve MILP's.

 Integer programming (IP) has a special case that is used in applications involving a number
of interrelated "yes-or-no decisions". When integer problems are restricted to values of zero and
one, this is the special case of general integer programming called Binary Integer Programming
(BIP). An example of such a model is the capital budgeting problem in which n projects are
competing for limited resources such as equipment, manpower and money. The objective is to
schedule projects to yield the largest profit while satisfying the specified limitations. Here, yj can
be defined as a binary variable representing the j-th project so that yj = 1 (or 0) if the j-th project
is scheduled (not scheduled). This problem is described by Ecker and Kupferschmidt [2] and
Ravindran, et.al. [3].

 Another example is the knapsack problem where the most valuable mix is determined
from among n items to be packed in a knapsack, providing that the total amount of volume of the
selected items does not exceed the capacity of the knapsack. Here too, yj = 1 or 0 depending on
whether or not item j is selected. This problem is described by Ecker and Kupferschmidt [2].

 The mathematical statement of a binary integer-programming problem is the same as an
integer programming statement with the additional restriction that all the variables are binary
variables. It is expressed in the following form in the summation notation:

 264

 n
 minimize : z = Σ hjyj
 j=1
 p
 subject to: Σ gijyj < bi for i = 1,2, ..., m (6-5)
 j=1

 yj = 0 or 1, for j = 1,2, ..., p

Perspective on Solving Integer Programming Problems

 The two primary determinants of computational difficulty for an IP problem are the number
of integer variables and the structure of the problem. This situation is in contrast to linear
programming, where the number of (functional) constraints is much more important than the
number of variables. In integer programming, the importance of constraints is secondary to the
other two factors. For MILP problems, it is the number of integer variables that is important,
because the computational time increases tremendously as the number of integer variable
increases.

 Integer programming problems frequently have some special structure that can be exploited
to simplify and solve very large problems successfully. Special purpose algorithms designed
specifically to exploit certain kinds of special structures are becoming increasingly important in
integer programming.

 There are three generally used methods for solving integer-programming problems: LP-
relaxation, cutting plane and branch and bound. The first one is a simple approximate method and
the third one is considered the best of the three. In LP-relaxation the linear programming problem
is solved ignoring the integer restriction, and then the noninteger values in the resulting solution
are rounded-off to integer values. Sometimes, sequences of LP-relaxations for portions of an IP
problem are used to solve the overall IP problem effectively. Although this is often adequate, this
approach is not always accurate. One of the drawbacks is that the optimal linear programming
solution may not necessarily remain feasible after it is rounded-off. Even if the optimal linear
programming solution is rounded off successfully, there is no guarantee that this rounded-off
solution will be the optimal integer solution. Moreover, for large problems, such a procedure can
become computationally expensive. For example, if the optimal LP solution is x1 = 3.2 and x2 =
4.6, then there are four different combinations of integer values to x1 and x2 that are close to their
continuous values. (3, 4), (3, 5), (4, 4), and (4, 5). If the feasible solutions are selected from these
four, then the one that gives the smallest value of the objective function (if minimizing) will be an
approximate integer solution. For 10 integer variables, this gives 210 = 1024 combinations of
integer solutions that will have to be evaluated according to Ravindran, et.al. [3]. Then, after
performing these evaluations, there is no guarantee that an optimal integer solution has been found.

 The cutting plane algorithm solves a sequence of successively tighter LP relaxation
problems, hoping to produce an optimal integer solution. Details are given by Nemhauser, et.al.

 265

[1]. The algorithm eliminates parts of the feasible region that do not contain feasible integer
solutions. However, it is not unusual to have a very large number of cuts required for convergence.

 The most widely used method for solving both integer and mixed integer programming
problems is the branch-and-bound algorithm. Most commercial computer codes for solving
integer-programming problems use this approach [3,4]. The method performs an efficient
enumeration of a small fraction of the possible feasible integer solutions to locate the optimum. In
the next section, the branch and bound technique is described in detail for IP, and it is extended
for the important special case of BIP and the more general case of MILP.

The Branch and Bound Technique

 A bounded integer-programming problem has a finite number of feasible solutions, and it
is natural to consider using an enumeration procedure for finding an optimal solution.
Unfortunately, this finite number can be, and usually is, very large; and exhaustive enumeration
has been found to be prohibitively time consuming for such problems [2]. Therefore, it is
imperative that an enumeration procedure be structured so that only a small fraction of the feasible
solutions are examined.

 The basic idea of the branch-and-bound technique is to divide and conquer. If the original
problem is very large, then it would be difficult to solve it directly; and hence it is divided into
smaller and smaller subproblems until these subproblems can be solved easily or conquered. To
divide (branch) the original problem into smaller subproblems, the entire set of feasible solutions
is partitioned into smaller and smaller subsets; and for each one, an upper bound for the value of
the objective function is obtained from the solutions within that subset (when maximizing). The
conquering (fathoming) is done in two parts. Firstly, the bounds for the best solution in the subset
are found; and then the subset is discarded if its bound indicate that it cannot possibly contain an
optimal solution for the original problem [5]. The subset with the highest upper bound is
partitioned further into subsets. Their upper bounds are obtained in turn and used as before to
exclude some of these subsets from further consideration. From all the remaining subsets, another
one is selected for further partitioning and so forth. This process is repeated until a feasible solution
is located such that the corresponding value of the objective function is greater than the upper
bound for any of the other subsets. Such a feasible solution must be optimal since none of the
subsets can contain a better solution.

A Branch-and-Bound Algorithm for General Integer Programs

 This algorithm has four stages as described below after Ecker and Kupferschmid [2]. First,
the original problem is solved with LP relaxation (Step 0. Initialize). Then the first step involves
partitioning the original set (problem) into two subsets (subproblems) by adding additional
constraints (Step 1. Branch). Objective function values from the newly partitioned subsets are
obtained in the second step by solving the LP's for the subsets (Step 2. Bound). In the third step,
all of the subsets that cannot contain the optimal solution are designated for no further evaluation.
This is called fathoming (Step 3. Fathom). The fourth step tests if there are any more subsets to be
fathomed; and if there are, the algorithm is invoked again (Step 4. Test). These steps are described
in detail as follows for maximizing the objective function of the integer programming problem:

 266

Step 0. Initialize. (Locate upper and lower bounds)

Solve the original problem by linear programming relaxation. If all the constraints are satisfied by
the solution, then the optimal integer solution for the problem has been found.

The linear programming relaxation solution provides an upper bound, zU, to the problem because
the optimal integer solution cannot have an objective function value larger than the linear
programming relaxation solution. The imposition of integer restriction on x can only make the
solution worse.

If an integer solution has not been found, then a lower bound zL for the optimal objective function
value is found that is equal to the objective value at some point that is feasible for the integer
program. This could be where all of the variables are zero or some comparable solution that
satisfies all the constraints and that will surely be smaller than the final optimal value.

If no such feasible point is readily known, set zL = -∞. This lower bound solution is also designated
as the incumbent solution. This means that it is the best integer solution obtained so far. When a
better integer feasible point is obtained as the solution proceeds, then that would be the new
incumbent solution.

Step 1. Branch. (Partition problem into two subsets)

Select a noninteger basis variable from the LP solution to the problem (initially, the LP relaxation
solution) and partition the set into two subsets. A subset is obtained from a set by introducing an
additional constraint to the set (branching). The additional constraint depends on the noninteger
basis variable that is selected for branching.

If there are more than one noninteger basis variables in the solution, then any one of them can be
selected for branching, and the solution may move more rapidly by selecting the variable with the
largest fractional value [3].

Thus, branching is accomplished by adding constraints to the LP problem to exclude the noninteger
values of the chosen basis variable. For example, if the output solution has the values x = [0, 2.5,
3], then this set is partitioned further into two subsets by adding an additional constraint to exclude
the noninteger value of the variable. (In this case, x2). The additional constraints for the two subsets
would be x2 ≤ 2 and x2 ≥ 3 respectively.

Step 2. Bound. (Solve LP's from subsets)

Solve the two new linear programs that are obtained by appending the extra constraint as a result
of Step 1, to the original programming relaxation. These are designated as subsets, and their
resulting optimal values (if they are not infeasible) would be the upper bound zU for that branch
when the subset is developed because additional integer constraints are added in expanding
branches.

 267

Step 3. Fathom. (Test of the LP objective function values for the subsets to determine if no
further evaluation)

Examine the subsets that contain the optimal points, and fathom a subset if:

(a) zU ≤ zL, i.e. subset objective function value is less than the lower bound, and no further
evaluations are needed.

(b) The subset has no feasible points, and no further evaluations are needed.

(c) If zU is an integer feasible solution and zU > zL, then this is the new incumbent solution,
since it is the best integer solution obtained thus far.

Step 4. Test. (Determine remaining subsets to be evaluated)

Select a subset among those from Step 1 that has noninteger values for branching. If all subsets
have been fathomed, the incumbent solution is optimal for IP. Otherwise, return to Step 1.

 If the objective is to minimize rather than maximize the objective function, the procedure
is unchanged except that the roles of the upper and lower bounds are reversed. Thus zL would be
replaced by zU and vice versa, ∞ becomes -∞, and the directions of the inequalities in the branch
and bound algorithm would be reversed.

 To apply the branch and bound algorithm, rules are needed to determine the selection of
variables for branching and the order to follow the branches along with determining the lower
bounds on the objective function value. The two most popular branch rules are the best-bound rule
and the newest bound rule.

 The best-bound rule selects the subset having the most favorable bound (the largest upper
bound in the case of maximization) because this subset would seem to be the most promising one
to contain an optimal solution.

 The newest bound rule selects the most recently created subset that has not been fathomed
for further branching. A tie between subsets created at the same time is broken by taking the one
with the most favorable bound.

 Also, branches can be developed by the breadth first rule and the depth first rule. The
breadth first rule has the subsets generated at the current depth of the branching evaluated before
moving further down. The depth first rule has the subsets generated in the center, expanded down
as far as possible before evaluating subsets on the left or right. In the next section this method is
illustrated by solving a simple integer programming problem and a binary integer-programming
problem.

 268

A Branch-and-Bound Example for Integer Programming

 The branch-and-bound algorithm is illustrated in solving the following integer
programming example problem after Ecker and Kupferschmid [2].

 IP: maximize: z(x) = -3x1 + 7x2 + 12x3 (6-6a)
 subject to: -3x1 + 6x2 + 8x3 ≤ 12
 6x1 − 3x2 + 7x3 ≤ 8
 -6x1 + 3x2 + 3x3 ≤ 5
 x1, x2, x3, nonnegative integers (6-6b)

 The above can be represented as {maximize z(x), subject to Ax ≤ b, x ∈ F} where F is the

set of all nonnegative vectors x ∈ R3 such that all three linear inequality constraints are satisfied.
The following gives the steps in solving this problem by the branch and bound algorithm that was
described previously.

Step 0 Initialize.

The simplex method is used to solve the linear programming problem without the requirement that
the xj's be integer. This is called linear programming relaxation and is designated LP-1. The result
is:
 x = [0, 0.30, 1.3]T, z = 17.4

This solution has noninteger components, and thus it is not optimal for IP. However, the optimal
integer solution can not have an objective function larger than 17.4, since the imposition of integer
restrictions on x can only make the LP solution worse, i.e. the optimal solution can not be improved
by adding constraints. Thus, the upper bound, zU, for this set is 17.4.

To establish a lower bound on the objective function value we note that x = 0 is feasible for IP and
yields an objective value of z(x) = 0. Thus, the maximum value of IP is surely larger than zL = 0,
because we can do that well by selecting x = 0.

We could use zL = -∞ instead, and the algorithm would still work. However, the way zL is employed
in the bounding step, it is sometimes faster and convenient to start with a tighter lower bound of
zL = 0. We use this value and declare x = [0, 0, 0]T to be the incumbent solution which means that
x = [0, 0, 0] T is the best feasible solution obtained.

As we proceed, the incumbent solution is reset to any feasible solution that has a better (greater in
case of maximization) value than the previous incumbent solution (if any); and at the end of the
procedure, the current incumbent solution is declared to be the optimal value for the original
problem.

Step 1. Branch.

 269

According to the algorithm statement, either x2 or x3 can be chosen as the variable on which to
branch, and the algorithm gives procedures for this selection. Using x2, LP-1 is partitioned into
two linear programs having additional constraints x2 ≤ 0 and x2 ≥ 1, because x2 must be integer.
The optimal solution to IP must be in:

 either F ∩ {x∣ x2 ≤ 0} or F ∩ {x∣ x2 ≥ 1}

The variable x2 is constrained to be nonnegative, and every point in the left-hand subset has x2 =
0. This creates the following two new linear programming problems that are solved in step 2.

 LP-2 max: -3x1 +7x2 +12x3 LP-3 max: -3x1 +7x2 +12x3 (6-7a)

 subject to: -3x1 +6x2 +8x3 ≤ 12 subject to: -3x1 +6x2 +8x3 ≤ 12
 6x1 −3x2 +7x3 ≤ 8 6x1 −3x2 +7x3 ≤ 8 (6-7b)
 -6x1 +3x2 +3x3 ≤ 5 -6x1 +3x2 +3x3 ≤ 5
 x2 ≤ 0 new constraint x2 ≥ 1 new constraint
Step 2. Bound.

The two linear programming problems obtained by adding the extra constraints to the original
linear programming relaxation are solved, and the results are given below. These solutions
establish a new upper bound on the IP objective function from each of the subsets produced by the
branch.
 maximize z(x) maximize z(x)
 x ∈ F x ∈ F
 Ax ≤ b Ax ≤ b
 subject to x2 = 0 subject to x2 ≥ 1

 x = [0, 0, 1.1] x = [0.7, 1, 1]
 z = 13.7 z = 17

Step 3. Fathom.

A subset requires no further evaluation (fathomed) if it satisfies any of the three conditions given
in step 3 of the algorithm. Checking the node conditions in step 2, neither of the solution contains
integer optimal solutions, and both preceding subsets must be included in further consideration:

 13.7 is greater than zL = 0
 17 is greater than zL = 0 ⇒ cannot fathom by (a)
 neither subproblem is infeasible ⇒ cannot fathom by (b)
 neither subproblem has an integer
 solution that is greater than zL = 0 ⇒ cannot fathom by (c)

 270

Step 4. Test.

Both subsets remain unfathomed, so step 1 of the algorithm is repeated. The iteration continues
until no subsets remain to be fathomed.

An iteration through the algorithm is one application of steps 1 through 4, and many such iterations
may be performed before the optimal solution is found. The result of the first iteration is shown in
Figure 6-1 in a branching diagram. It is often convenient and helpful to keep track of the solution
process by drawing such a diagram. Here, the subproblems are drawn as nodes of a binary tree,
and they are connected by links that show how the branching was performed. For this reason, the
subproblems are also referred to as nodes.

From Figure 6-1, we see that the first iteration of the problem yields two unfathomed nodes. Since
both nodes have to be fathomed, one of the nodes is chosen to begin the second iteration. Selecting
the left node, the subproblem has the LP solution x = [0, 0, 1.1], and so x3 is chosen as the variable
on which to branch.

Two additional constraints are introduced to exclude a noninteger value of x3 i.e., x3 ≥ 2 and x3 ≤
1. These inequalities are used to form the new left and right subproblems as shown at the bottom
of Figure 6-2. One of the two new nodes in Figure 9-2 is fathomed because it is infeasible. As
mentioned before, a node is fathomed for an infeasible subproblem because it means that there are

START zL = 0

│
max z(x)
Ax ≤ b
x ∈ F

x = [0, 0.3, 1.3]
z = 17.4

Iteration 1
│

┌──────────────────────┐
max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F
x2 = 0 x2 ≥ 1

x = [0.7, 1, 1]
z = 17 x = [0,0,1.1]

z = 13.7

Figure 6-1 Branching Diagram through Iteration 1

 271

no points that satisfy both the original constraints and those added in branching. As the constraint
set is empty, it cannot contain the optimal point for IP. This subset of F is therefore excluded from
further consideration by condition (b) of the step 3 in the algorithm statement, and the same has
been noted in the branching diagram.

The solution for other new subproblem at iteration 2 (Figure 6-2) is an integer solution, x = [0, 0,
1]. Also, z = 12 > zL = 0, so it is fathomed by condition (c). The maximum value for this branch
is obtained at the integer solution [0, 0, 1], which means that there are no integer solutions in on
this branch having an objective value higher than z = 12. Thus, it is not necessary to consider this

START zL = 0
max z(x)
Ax ≤ b
x ∈ F

x = [0, 0.3, 1.3]
z = 17.4

Iteration 1
│

┌──────────────────────┐
max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F
x2 = 0 x2 ≥ 1

x =[0.7, 1, 1]
z =17 x = [0, 0, 1.1]

z =13.4
Iteration 2

│
┌──────────┐

max z(x) max z(x)
Ax ≤ b Ax ≤ b

x ∈ F x ∈ F
x2 = 0, x3 ≥ 2 x2 ≤ 0, x3 ≤ 1

x =[0, 0, 1]
z =12

Infeasible
Fathomed(b) Fathomed(c)

zL = 12

Figure 6-2 Branching Diagram through Iteration 2

 272

branch further. If it turns out that this subset contains the optimal point for the integer program,
then it must be the point x = [0, 0, 1].

An integer point has been found with an objective function value of more than the current lower
bound of zL = 0. The existing lower bound is updated to zL = 12 and x = [0, 0, 1] is declared to be
the new incumbent solution. At this stage, one can be sure that the maximum value of the integer
program cannot be smaller than z = 12 because x = [0, 0, 1] is feasible and it yields an integer
objective function value of z = 12.

Now that the lower bound value has been changed, it is necessary to evaluate the nodes from the
other branch. When the remaining nodes are fathomed, the present incumbent solution is
compared to these results. Since the other node has z = 17 > zL = 12, branching is continued.

In Figure 6-3 the third iteration is shown that begins with a branching on x1 from the unfathomed
node on the right. This yields two nodes, and one is an infeasible subproblem without a solution
that satisfies the original problem with the additional constraints. This node is fathomed by
condition (b). The other node is feasible with a non-integer optimal point, and it cannot be
fathomed because it has z = 16.8 > zL = 12, so further branching is required.

The remaining sub problem solution has two variables, x2 and x3, with noninteger values, and so
branching can be done on either of those variables. Selecting x3, because it has the largest fractional
value, the solution process is continued; and the results are shown in Figure 6-4.

In iteration 4, the right subproblem is fathomed, as it is infeasible. The other new subproblem
having a noninteger solution cannot be fathomed because it has z = 15.6 > zL = 12. Another iteration
is required, using either x1 or x2. Selecting x2, the procedure is continued, and the results are shown
in Figure 6-5 for the entire problem.

In iteration 5, the solution of these two subproblems shows that one of them is infeasible and the
other has z = 15 at the integer point x = [2, 3, 0]. Therefore, both nodes are fathomed, and no further
branching is required. Also, z = 15 > zL = 12, so the lower bound is updated to zL = 15 and x = [2,
3, 0] is the new incumbent solution. Applying the convergence test of the algorithm (step 4), the
algorithm stops because no unfathomed subsets remain. Therefore, the incumbent solution x = [2,
3, 0] with z = 15 is declared to be the optimal solution to the integer problem.

 In this example, the optimal point was obtained from the solution of the last subproblem
generated in the final iteration. However, this is not always the case, and many times the optimal
point is found prior to the final iteration. However, all nodes have to be fathomed to locate the
global optimum among the local optima.

 273

The Order of Selecting Unfathomed Nodes

 Had the problem been solved depth first with the right-hand branch, it would not be
necessary to expand the branch on the left because the integer feasible value of z = 15 is greater
than z = 13.7 for the left branch. See Figure 6-6. It is quite difficult to tell in advance which subset
strategy will work best for a particular problem. However, sometimes an intelligent guess can be
made on which strategy to select. For example, in this problem the right subproblem generated at
Iteration 1 had a higher optimal value than the left subproblem, 16.8 vs. 12. It would be reasonable
to expect that following the right-hand branch might yield an integer point with an objective value
high enough to fathom the left node. Computer programs incorporate heuristics to assist in making
decisions about ways to order the branching.

START zL = 0

│
max z(x)
Ax ≤ b
x ∈ F

x =[0, 0.3, 1.3]
z =17.4

Iteration 1
│

┌──────────────────────┐
max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F
x2 = 0 x2 ≥ 1

x =[0.7, 1, 1]
z =17 x =[0, 0, 1.1]

z =13.7
Iteration 2 Iteration 3

│ │
┌──────────┐ ┌────────────┐

 max z(x) max z(x) max z(x) max z(x)
 Ax ≤ b Ax ≤ b Ax ≤ b Ax ≤ b

 x ∈ F x ∈ F x ∈ F x ∈ F
 x2 = 0, x3 ≥ 2 x2 = 0, x3 ≤ 1 x1 ≥ 1, x2 ≥ 1 x1 = 0, x2 ≥ 1

Infeasible x =[0, 0, 1]
z =12 x = [1, 1.3, 0.9]

z =16.8
Infeasible

Fathomed(b) Fathomed (c) Fathomed(b)
zL = 12

Figure 6-3 Branching Diagram through Iteration 3

 274

START zL = 0
│

max z(x)
Ax ≤ b
x ∈ F

x =[0, 0.3, 1.3]
z =17.4

 Iteration 1
│

 ┌──────────────────────┐
max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F
x2 = 0 x2 ≥ 1

x =[0, 0, 1.1]
z =13.7 x = [0.7, 1, 1]

z =17
Iteration 2 Iteration 3

│ │
┌──────────┐ ┌────────────┐

 max z(x) max z(x) max z(x) max z(x)
 Ax ≤ b Ax ≤ b Ax ≤ b

 Ax ≤ b
 x ∈ F x ∈ F x ∈ F x ∈ F
x2 = 0, x3 ≥ 2 x2 = 0, x3 ≤ 1 x1 ≥ 1, x2 ≥ 1 x1 = 0, x2 ≥ 1

Infeasible x = [1, 1.3, 0.9]
z =16.8 x = [0, 0, 1]

z =12Infeasible
Fathomed (b) Fathomed (c) Fathomed (b)

ZL = 12
 Iteration 4

│
┌────────────┐

max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F

x1≥1, x2≥1, x3 = 0 x1≥1, x2≥1, x3≥1
Infeasible x =[3.1, 3.6, 0]

z =15.6
Fathomed (b)

Figure 6.4 Branching Diagram through Iteration 4

 275

START zL = 0
max z(x)
Ax ≤ b
x ∈ F

x = [0, 0.3, 1.3]
z =17.4

Iteration 1
│

┌──────────────────────┐
max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F
x2 = 0 x2 ≥ 1

x = [0, 0, 1.1]
z = 13.7 x = [0.7, 1, 1]

z = 17
Iteration 2 Iteration 3

│ │
┌──────────┐ ┌────────────┐

 max z(x) max z(x) max z(x) max z(x)
 Ax ≤ b Ax ≤ b Ax ≤ b Ax ≤ b
 x ∈ F x ∈ F x ∈ F x ∈ F
 x2 = 0, x3 ≥ 2 x2 = 0, x3 ≤ 1 x1 ≥ 1, x2 ≥ 1 x1 = 0, x2 ≥ 1

x = [0, 0, 1]
z = 12 x = [1, 1.3, 0.9]

z = 16.8 Infeasible
Fathomed (b) Fathomed (c) Fathomed (b)

zL = 12
Iteration 4

│
┌────────────┐

max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F

x1 ≥ 1, x2 ≥ 1, x3 = 0 x1 ≥ 1, x2 ≥ 1, x3 ≥ 1
x = [3.1, 3.6, 0]

z=15.6 Infeasible Fathomed (b)
Iteration 5

│
┌────────────┐

max z(x) max z(x)
Ax ≤ b Ax ≤ b
x ∈ F x ∈ F

x1 ≥ 1, 1 ≤ x2 ≤ 3, x3 = 0 x1 ≥ 1, x2 ≥ 4, x3 = 0

Figure 6.5 Branching Diagram through Iteration 5

 276

Guidelines and Practical Considerations

 The time required to solve a particular problem depends on the way it is formulated. The
solution time can be reduced considerably by selecting the variables on which to branch as well as
selecting the nodes on which the next branching is to be done.

Figure 6-6-Branching Diagram Depth First Subset Selection Strategy

 277

 The choice of branching variables for improved performance are based on factors such as
selecting a variable that has the highest fractional value, or a variable that has the greatest
importance (which represents an important decision) in the model or the one with the lowest index
value [3]. Similarly, the selection of nodes for further branching is based on selecting a node whose
LP optimal value is the largest (for maximization problems). In some problems, it might be
satisfactory to stop the branch-and-bound algorithm when a solution is within say 3% of the linear
programming relaxation of the problem. Also, a tight lower bound on the integer variables helps
in reducing the computation time. In addition, the number of integer variables should be as small
as possible. This can be done by approximating integer variables that are expected to have large
values as continuous variables.

A Branch and Bound Algorithm for Binary Integer Programs

 Binary Integer problems can be solved by using the same algorithm described in the
previous section. The first step of the algorithm was to solve the linear programming relaxation of
the original problem. The resulting solution satisfied the linear inequalities but not the integer
restrictions of the original problem. One of the resulting non-integer variables was selected for
further branching at the beginning of iteration 1.

 However, there exists a different relaxation of the original problem, whose solution yields
faster results. This is because, if the integer-programming problem has only 0-1 variables, the
bounding step in the branch-and-bound algorithm can be simplified considerably. Because most
of the work of the branch-and-bound algorithm is in the bounding step, this simplification can
make the algorithm vary much faster. Unlike the one used for the previous example, this relaxation
ignores the inequality constraints and requires the variables to be integers. This is in contrast to
the previous algorithm that ignored the integer restrictions. This results in a solution set that
satisfies the binary (integer) requirements but may not satisfy the inequalities.

 The algorithm for this relaxation is obtained by slightly modifying the previous algorithm
and is repeated here for maximizing the objective function.

Step 0. Initialize

Find an upper bound (for maximization problems) zU on the objective function. This is done by
setting the variables in the objective function with negative coefficients to zero and positive
coefficients to one. Check if this solution set satisfies the constraints. If not, then further branching
is required. Find a lower bound zL on the objective function by setting all the variables with positive
coefficients to zero and the rest to one. This is the minimum value that the objective function can
have, and the optimal solution cannot be lower than this value. This forms the initial lower bound
for the problem. Later, as the solution proceeds, the lower bound will be updated if any solution
set is found that satisfies all the constraints and has a higher objective function value.

 278

Step 1. Branch

Select any (remaining) binary variable to branch on and form two new subsets by setting this
binary variable to one and zero respectively.

Step 2. Bound

With this variable fixed, find an upper bound on the objective function by setting the remaining
variables to 1's and 0's (depending on whether they have positive or negative coefficients). Also
find a lower bound on the objective function.

Step 3. Fathom

Examine the nodes and fathom a node:

(a) If zU ≤ zL i.e., The upper bound of the subset is lower than the current lower bound of the
problem.

(b) If any of the constraint becomes infeasible as a result of fixing the branching variable to 1 or
0. The way to do it is to find the maximum or minimum value that each constraint can assume
(after fixing the branching variables to particular values of 1's or 0's) and to check if it still lies
within the limits of the inequalities. If it does not, then it means that there does not exist any
combination of 1's and 0's for the remaining variables that can satisfy the constraint. The
subproblem is considered to be infeasible if any of the constraint cannot be satisfied, and hence
such nodes are fathomed.

(c) If zU is a feasible solution. If so, then this set is the new incumbent solution since it is the best
integer solution obtained so far.

Step 4. Test

Return to step 1 if there are any unfathomed nodes. Else, the current lower bound (incumbent
solution) is the optimal value for the 0-1 problems.

 A major part of this algorithm is the same as given in the previous section. The difference
lies in the way the algorithm is implemented i.e., the way in which the subset is determined to be
infeasible or not. Also, the upper and lower bounds are obtained by direct substitution. Hence, LP
relaxation of the subproblems need not be solved at each step. This results in a faster and easier
way to solve binary problems.

A Branch-And-Bound Example for Binary (0-1) Integer Problem

 Consider the following example, after Ecker and Kupferschmid [2]. It demonstrates how
the speed of branch-and-bound algorithm can be increased when an integer program contains only
0-1 variables by using the algorithm given above.

 279

 max: z(x) = 3x1 + 2x2 + 5x3 + 7x4 (6-8a)
 subject to: 3x1 - 2x2 + 2x3 + 5x4 ≥ 6
 5x1 + 3x2 - x3 + 4x4 ≤ 3 (6-8b)
 xj = 0 or 1, j = 1,.....4

Relaxation of the above problem after ignoring the inequalities is given below.

 max: z(x) = 3x1 + 2x2 + 5x3 + 7x4 (6-9)

 xj = 0 or 1, j = 1...., 4

 All the objective function coefficients happen to be positive, so the largest possible value
of z(x) (upper bound) would be z(x) = 17 when x = [1, 1, 1, 1], zU = 17. No further computations
would have been needed if this point were to be feasible. It is found by inspection of the original
problem that x = [1, 1, 1, 1] is not feasible because the second constraint is violated. In this way,
the initial relaxed problem can be solved by inspection. The constraints are then evaluated to decide
if this solution is feasible for the original problem.

 Next, a lower bound on the objective function value is found by inspection and for the
above problem, the minimum value that z(x) could have is when all the nonnegative cost
coefficients in the objective function are 0, which yields z(x) = 0 when x = [0, 0, 0, 0]. Thus, the
branch-and-bound process starts for the above process with zL = 0. The results of the process are
shown at the top of the branching diagram in Figure 6-7. The main idea here too is to systematically
eliminate from further consideration, subsets that can be determined not to contain the optimal
point for the original problem.

 The term x = 0 _ _ _ and x = 1 _ _ _ implies that the value of x1 is fixed whereas x2, x3 and
x4 are free to assume values of either 0 or 1. Hence, this term is referred to as the partial solution
of x1. When a particular combination of x2, x3 and x4 fills up the blanks in a partial solution, the
resulting vector is called a completion of the partial solution. A completion that has all zeroes after
the partial solution is called the zero completion. For example, 1 0 0 0 is called the zero completion
of the partial solution 1 _ _ _. Finally, a completion that satisfies all the inequality constraints is
called a feasible completion.

 Selecting x1 as the variable on which to branch, we get two possible configurations;
x = 1 _ _ _ and x = 0 _ _ _, as shown in Figure 6-7. The next step is to find an upper bound on the
objective value for each of the subproblems. As mentioned before, the largest value of the objective
function can be found by setting all variables with positive coefficients to one and those with
negative coefficients to zero. In this case, the upper bound on the objective function for the right
subproblem (with x1 = 0) is z(x) = 14, at the point x = [0,1,1,1] whereas for the left subproblem
(with x1 = 1); zU = 17 at the point x = [1,1,1,1].

 280

 Now, the nodes are subjected to the fathom checks to determine if they could be fathomed.
As both subproblems have their upper bound zU greater than the current lower bound of zL = 0,
neither of them can be fathomed on the basis of condition (a). Condition (b) is a check on the
feasibility of the subproblems. To determine this, one must find out if there are any feasible
completions to the partial solutions of the subproblems. One way of doing this is to exhaustively
enumerate all the possibilities for a particular partial completion and check them in the original
inequality constraints. In this case, the partial completion x = 0 _ _ _ has 8 combinations of
completions such as 0000, 0001, 0010, 0011,, 0111. This is not practical, especially when there
are many variables and constraints.

 An alternate and easier method is to simply eliminate subproblems that are discovered to
be infeasible. As mentioned before, this is found by checking if the maximum or minimum values
of the constraints lie within the limits of their inequalities. The inequality constraints with x1=1 for
the left subproblem are as follows:

START zL = 0

│

max z(x)

Ax ≤ b

x ∈ I

x = [1, 1, 1, 1]

z = 17

Iteration 1

│

┌──────────────────────────────────┐

max z(x) max z(x)

 Ax ≤ b Ax ≤ b

 x ∈ I x ∈ I

 x = 1 _ _ _ x = 0 _ _ _

x = [0, 1, 1, 1]

Infeasible z1 = 14

Fathomed(b)

│

│

 zU 17 upper bound

 │ Iteration 2

z1 14 ┌────────────────┐

 max z(x) max z(x)

 z2 12 new incumbent solution Ax ≤ b Ax ≤ b

 z2 = 12 x ∈ I x ∈ I

 and new lower bound. x = 0 1 _ _ x = 0 0 _ _

 Infeasible x = [0, 0, 1, 1]

 z2 = 12

 Fathomed(b) Fathomed(c)

 zL 0 initial lower bound.

 Figure 6-7 Complete Branching Diagram for the Binary Integer Example.

 281

 f1(x) = 3(1) - 2x2 + 2x3 + 5x4 ≥ 6 (6-10)
 f2(x) = 5(1) + 3x2 - x3 + 4x4 ≤ 3

The largest value that the first constraint can have is obtained by setting all (remaining) variables
with positive coefficient to one and the rest to zero. This yields f1(x) = 10 at the point x = [1,0,1,1].
Similarly, the minimum value that the second constraint can have is f2(x) = 4 at the point x =
[1,0,1,0]. Since, even the minimum value of the second constraint cannot satisfy the inequality
condition, it implies that there are no completions of the partial solution x = 1 _ _ _ that will satisfy
the second constraint. This means that x1 cannot have a value 1 in the final optimal solution. Hence
the left node can be fathomed by condition (b). There is no need to check the rest of the constraints
if any other constraint is unsatisfied.

 Performing the same sort of analysis for the right subproblem with x1 = 0 gives the
constraints:

 f1(x) = (0) - 2x2 + 2x3 + 5x4 ≥ 6 (6-11)
 f2(x) = (0) + 3x2 - x3 + 4x4 ≤ 3

The first constraint has the maximum value f1(x) = 7 at the point x = [0,0,1,1]. Similarly, the second
constraint has a minimum value f2(x) = -1 at the point x = [0,0,1,0]. Hence, there is at least one
completion each for the partial solution x = 0 _ _ _ that satisfies the two constraints. Therefore, the
right subset cannot be fathomed on the basis that it is infeasible [condition (b)]. This does not
necessarily mean that the subset is feasible as there might not be any single completion that
satisfies both constraints. Also, no attempt is made to find a single completion that satisfies all
constraints.

 To finish the fathom check it is necessary to determine whether the point yielding the upper
bound on the objective function (in this case, x = [0,1,1,1]) is feasible or not. Inspecting the
constraints, it is found that the first constraint is not satisfied, and this point is infeasible. Thus,
condition (c) fails as well and hence, another branching will be required.

 Selecting x2 as the next variable to branch on, two new subsets are generated with partial
solutions 0 1 _ _ and 0 0 _ _. Once again, the first step would be to find an upper bound on the
objective value over each of the two new subproblems. For the left subproblem, the upper bound
on the objective function is z(x) = 14 at the point x = [0,1,1,1] whereas the right subproblem yields
an upper bound z(x) = 12 obtained at the point x = [0,0,1,1].

 Performing the fathom check on the subproblems, we find that the nodes cannot be
fathomed by condition (a) because both upper bounds are greater than the current lower bound of
zL = 0. Checking for the feasibility of the subproblems, we see that the partial solution 0 1 _ _ of
the left subproblem cannot satisfy the first constraint. Hence, the left node is fathomed by condition
(b). For the right subproblem, each constraint has feasible completions to the partial solution 0 0
_ _ node and so it cannot be fathomed by condition (b).

 282

 The final fathom condition checks the feasibility of the point yielding the upper bound. It
turns out that x = [0,0,1,1] satisfies both the constraints and hence, this node is fathomed by
condition (c) and the point x = [0,0,1,1] is declared to be the new incumbent solution with zL = 12
as the new lower bound. Finally, as there are no more nodes to be fathomed, x = [0,0,1,1] is
declared to be the optimal point with z = 12. The final branching diagram is as shown in Figure 6-
7.

It should be noted here that when checking for infeasibilities, no attention is paid to the objective
function value. Similarly, when an upper bound is being established on the objective function, the
constraints are ignored altogether. Moreover, it is never attempted to find the best feasible
completion to a subproblem in any single step of the algorithm. This makes each step in the branch-
and-bound algorithm easy enough to be performed by inspection for problems that could be
worked out by hand.

Mixed Integer Linear Programming

 Problems in which only some of the variables assume integer values and the rest are
continuous are called as mixed integer programming problems. The integer variables can be either
pure integer or binary integer or both. Suppose there are n variables out of which h are integer
variables; the mathematical model in the minimization form can be expressed as:

 n
 Minimize: z = Σ cjxj, (6-12)
 j=1
 n
 Subject to: Σ aijxj < bi, for i = 1,2, ..., m,
 j=1

 xj integer for j = 1,2,....,h (h ≤ n)
 xj ≥ 0 for j = h + 1, ,...., n

This model becomes a pure integer-programming problem when h is equal to n.

A Branch-And-Bound Algorithm for Mixed Integer Linear Programs

 The simplest way of solving mixed integer problems is to use the branch and bound
algorithm for general integer programs with the only difference being in the branching step.
Though all variables are included in the LP subproblems, branching is done only on integer
variables. This ensures that the solution found by the algorithm is optimal for the mixed integer
problem. The steps are described as follows for maximizing the objective function.

Step 0. Initialize.

Solve the linear programming relaxation of the original problem. If the resulting solution has
integer values for all integer variables then the optimal solution for the integer program has been
found.

 283

The linear programming relaxation solution provides an upper bound zU to the problem because
the optimal integer solution cannot have an objective function value larger than the linear
programming relaxation solution. The imposition of integer restrictions on the integer variables
can only make the solution worse.

If the solution does not have integer values for all integer variables, then a lower bound zL for the
optimal objective function value is found that is equal to the objective value at some point that is
feasible for the integer program. This could be where all of the variables are zero or some
comparable solution that satisfies all the constraints and which will surely be smaller than the final
optimal value. If no such feasible point is readily known, set zL = -∞.

This lower bound solution is also designated as the incumbent solution. This means that it is the
best integer solution obtained so far. When a better integer feasible point is obtained as the solution
proceeds, then that would be the new incumbent solution.

Step 1. Branch

Select an integer variable that currently has a non-integer value from Step 0 and partition the set
into two smaller subsets. A subset is obtained from a set by introducing an additional constraint to
the set. The additional constraint depends on the integer variable that is selected for branching and
also on the (non integer) value of the integer variable when it is selected for further branching.

For example, if the integer variable xj has the value k < xj <k+1 where k is an integer, then the
partitioning is done by adding the constraint xj ≤ k and xj ≥ k+1 to the two subsets respectively.

Step 2. Bound.

Solve the linear programs that are obtained by appending the extra constraint as a result of Step 1,
to the original programming relaxation. These are designated as subsets, and their resulting optimal
values (if they are not infeasible) would be the upper bound zU for that branch when the subset is
developed because additional integer constraints are added in expanding branches.

Step 3. Fathom.

Examine the subsets that contain the optimal points, and fathom a subset if:

(a) zU ≤ zL, i.e. subset objective function value is less than the lower bound, then no further
evaluations are needed.

(b) the subset has no feasible points, then no further evaluations are needed.

(c) If the optimal solution obtained has integer values for all xj's for j = 1, 2, . . .h and zU > zL,
then this solution is called the integer-feasible point. It is designated the new incumbent solution,
and let zL = zU.

 284

Step 4. Test.

Select a subset among those from Step 1 that have non-integer values for branching. If all subsets
have been fathomed, the incumbent solution is optimal for MILP. Otherwise, return to Step 1.

 The procedure would remain unchanged even if the objective was to minimize rather than
maximize the objective function except that the roles of the upper and lower bounds are reversed.
Thus, zL would be replaced by zU and vice versa, ∞ becomes -∞, and the directions of the
inequalities would be reversed.

Mixed Integer Linear Programming Problem

 Consider the following MILP problem, after Murty (7):

 max z(x, y) = -3x2 - 4x3 - 5x4 - 20 (6-13a)

 subject to x1 - x2 + x3 + x4 = 4
 y1 + x2 - 2x3 + x4 = 3/2 (6-13b)
 y2 + 2x2 + x3 - x4 = 5/2
 y1, y2 ≥ 0 and integer; x1 to x4 ≥ 0

 The first step is to solve the LP relaxation of the original problem. As shown in the
branching diagram of Figure 6-8, the optimal solution does not satisfy the integer requirements of
y1 and y2. Hence further branching is required on either y1 or y2. Selecting y2, the additional
constraints over the two new subsets would be y2 ≤ 2 and y2 ≥ 3 respectively. The upper bound on
the objective value is -20. The right subproblem is solved with this additional constraint and the
output is an integer solution with zU = -90/4. Hence this subset is fathomed by condition(c) and the
solution declared to be the new incumbent solution with zL = zU.

 Solving the LP relaxation of the left subproblem yields an upper bound of -83/4 which is
larger than the current lower bound of zL = -90/4. Hence this subset cannot be fathomed, and further
branching is required. Branching on y1 and solving the right-hand subset, we get an integer solution
with zL ≥ zU. This subset is therefore fathomed by condition(c) and the solution is the new
incumbent solution. The lower bound is reset to zL = -86/4. Solving the left subproblem and
checking the fathom conditions, we find that it can be fathomed by condition(a). Since there are
no more subproblems left, the current incumbent solution is the optimal solution for the MIP
problem with an objective value z = -86/4 and (y1, y2, x1, x2, x3, x4) = (2, 2, 19/5, 1/10, 3/10, 0).

 285

Optimal Process Synthesis and Design

 Determining the optimal configuration when designing processes and plants is one of the
more important applications of mixed integer programming. This consists of selecting the best
configuration of reaction and separations units and the best operating conditions to convert raw
materials into products. A superstructure of possible reactors, separators and related units are
synthesized, typically using a flowsheeting program. The continuous variables represent the
continuous variables such as flow rates, temperature, pressures, and binary variables represent the
configuration of process units. The optimal structure and operating conditions are determined by
solving a mixed integer linear programming problem (MILP) or a mixed integer nonlinear
programming problem (MINLP), depending on the complexity of the process model.

 Other industrial applications include heat exchanger synthesis where the optimum heat
exchanger network is determined to minimize annual cost and to satisfy the utilities requirements

START zL = -∞
│

max z(x,y)
A(x, y) ≤ b
(x, y) ∈ F

(y, x) = [3/2 ,5/2 4, 0, 0, 0]
Z = -20
z =-20

Iteration 1
│

┌──────────────────────┐
max z(x, y) max z(x, y)
A (x, y) ≤ b A(x, y) ≤ b
(x, y) ∈ F (x, y) ∈ F

y2 ≤ 2 y2 ≥ 3
 (y, x) = [5/4, 2, 17/4, 1/4, 0, 0] (y, x) = [1, 3, 9/2, 0, 0, 1/2]
 z=-83/4 z = -90/4
 Fathomed(c)

Iteration 2
│

┌─────────────────────────────┐
max z(x,y) max z(x,y)
A(x,y) ≤ b A(x,y) ≤ b
(x,y) ∈ F (x,y) ∈ F

y2 ≤ 2, y1 ≤ 1 y2 ≤ 2, y1 ≥ 2
 (y,x)=[1 , 3/2, 9/2, 1/2, 0, 0] (y,x)=[2 , 2, 19/5, 1/10, 0]
 z=-86/4 z=-86/4
 Fathomed(a) Fathomed(c)
 Optimal solution; z = -86/4

 Figure 6-8 Branching Diagram for the MILP Problem

 286

(steam and cooling water) in a plant design or in an existing plant retrofit. Similar results are
obtained for mass exchanger networks, chemical reactor networks, distillation column networks
and the optimum location for the feed tray in a distillation column to meet product specifications
and maximize profit. In batch process scheduling, the optimum sequence for the use of equipment
to produce multiple products is determined. In reaction path synthesis, the optimal path is
determined to go from raw materials to products, e.g., the manufacture of acetone from ethanol
and methane.

 To predict the chemical and phase equilibrium for a set of gas, liquid and solid reactants
by free energy minimization, the optimization of a mixed integer programing problem is required
since the gas, liquid and solid phases may not have all of the components in all of the phases.
There are a number of special programs to perform this evaluation that contain extensive
thermodynamic properties in polynomial form.

 Following the description of methods to formulate mixed integer problems, an example is
given for a process superstructure where the optimum structure is obtained by solving a MILP
using the optimization program GAMS. The important feature of the GAMS is that this
optimization programming language uses the same structure and format that is used to express the
optimization problem mathematically, and there are a number of solvers that can be called to
preform the optimization, depending on the type of problem.

Summary of MIP Problem Formulations

 In formulating the optimization problem, a convention is used. In selecting among
process units, the following equations are used with integer variable yi where yi is 1 if process i is
selected and 0 if not.

∑ yi = 1 select only one unit

∑ yi < 1 select at most one unit

∑ yi > 1 select at least one unit

yj - yi < 0 select unit i only if unit j is selected

The last condition is used when there are several sequences of process units from which one
sequence is to be selected.

 For activation or deactivation of continuous variables, the bounds on capacities on a
process unit can be used. If a process unit does not exist, then the inlet flow rate should be zero;
and if it exists, the flow rate should be within the bounds of the upper and lower limits, FiL and
FiU . This can be expressed as:

FiL yi < Fi < FiU yi

 for yi = 1 then FiL < Fi < FiU

 287

yi = 0 then 0 < Fi < 0 or Fi = 0

 For activation and relaxation of constraints, consider the constraints f1(x) = 0 and f2(x) <
0 that describe a process unit. If the process unit exist, then yi = 1 , and the constraints should
be active. If the process unit does not exist, then yi = 0, and constraints should be do not exist
(are inactive). This case can be formulated using slack variables s1, s2 and s3 and upper bounds
U1 and U2. Slack variables are variables that are added to inequality constraint equations to
convert them to equality constraints.

 f1(x) + s1 - s2 = 0
 f 2 (x) < s3
 s1 + s2 < U1 (1 - yi)
 s3 < U2 (1 - yi)

and s3 can be eliminated to give:

f2 (x) - U2 (1 - yi) < 0

For example, if yi =1, then s1 - s2 < 0 or s1 - s2 = 0 , and s1 = s2 = 0 since both are
positive. This gives the result that:

 f1 (x) = 0
 f2 (x) < 0

If yi = 0, then s1 + s2 < U1 and s3 < U2 . The constraints are inactive.

 f 1 (x) + s1 - s2 = 0
 f 2 (x) < s3 < U2

This and additional information are given by Floudas, (19) for nodes with several inputs, logical
constraints and bilinear products.

Example for Optimal Design of a Chemical Complex

In this example, modified from Karimi (6), a mixed integer-programming problem is solved to
demonstrate the selection of the optimal process design from options to make or purchase raw
materials for the plant. The diagram in Figure 6-9 shows a superstructure of several options to
produce the product from the raw materials.

As shown in Figure 6-9, a company is evaluating producing chemical C (propylene oxide) from B
(propylene) in either Process 2 (chlorohydrin process) or Process 3 (peroxide process). Also, B
(propylene) can be made in Process 1 (steam cracking of propane to propylene) using A (propane)
as a raw material, or B (propylene) can be purchased from another company.

 288

This evaluation requires solving a mixed integer linear programming problem. The economic
model includes fixed and operating costs as given in the table below. The constraints are material
balances mass yields, demand for product and availability of raw materials as shown in the table.
Integer variables are used to have C produced from B in either process 2 or process 3 and to have
B either produced in process 1 or purchased from another company.

The optimal solution will select either process 2 or 3 to produce C and determine if B is to be
purchased or produced in process 1 by maximizing the profit. Also, the optimal amounts of B and
C will be determined given the demand for C and the availability of A.

Economic Data

Fixed Operating
Cost Cost Sales

Process ($/hr) ($/ton of feed) Feed Cost ($/ton) Product Price ($/ton)
 1 1,000 250 A 500 C 1,800
 2 1,500 400 B 950
 3 2,000 550

Process Data
 Availability of Raw
 Process Mass Yields Demand for Product Materials
 1 (A to B) 0.90 C < 10 tons/hr. A < 16 tons/hr
 2 (B to C) 0.82
 3 (B to C) 0.95

The process variables are defined as follows where F designates the mass flow rate in tons per
hour. The first subscript specifies the stream number and the second subscript gives the
component (chemical species) in the stream.

F1A flow rate of A to Process 1
F2B flow rate of B to either Process 2 or 3 if Process 1 is selected
F3A flow rate of unreacted A from Process 1
F4B flow rate of B purchased from a supplier if a supplier is selected
F5B flow rate of B to either Process 2 or 3
F6B flow rate of B to Process 2 if Process 2 is selected
F7B flow rate of B to Process 3 if Process 3 is selected
F8C flow rate of C if Process 2 is selected
F9B flow rate of unreacted B if Process 2 is selected
F10C flow rate of C if Process 3 is selected
F11B flow rate of unreacted B if Process 3 is selected
F12C flow rate of C to sales

 289

Integer variables are used to ensure either process 1 is used for making B from A or B is
purchased. Also, they are used to ensure that either Process 2 or 3 is selected. They are defined
as follows:

y1 = 1 if Process 1 is selected and 0 if not
y2 = 1 if Process 2 is selected and 0 if not
y3 = 1 if Process 3 is selected and 0 if not
y4 =1 if B is purchased and 0 if not

Process 1
A B

Process 2
B C

Process 3
B C

F1A

flow rate of A
(tons/hr)

F1B

flow rate of B
purchased
(tons/hr)

F3A

flow rate of A
unreacted
(tons/hr)

F2B

flow rate of B
(tons/hr)

F9B

flow rate of B
unreacted
(tons/hr)

F11B

flow rate of B
unreacted
(tons/hr)

F8C

flow rate of
C
(tons/hr)

F10C

flow rate of
C
(tons/hr)

F12C

flow rate of C
product
(tons/hr)

F6B

F7B

1
2

3

4

5

6

7

8

9

10

11

F5B

Figure 6-9 Process Superstructure Diagram for Optimal Design Example

 290

The material balances associated with the processes and the nodes in the diagram are as follows.

Conversion of A to B in Process 1:
 F2B = 0.90 F1A
 F3A = 0.10 F1A

Conversion of B to C in Process 2:
 F8C = 0.82 F6B
 F9B = 0.18 F6B

Conversion of B to C in Process 3:
 F10C = 0.95 F7B
 F11B = 0.05 F7B

Material balance on B at node between processes:
 F2B + F4B = F5B
 F5B = F6B + F7B

Material balance on C at the node from Processes 2 and 3:
 F8C + F10C = F12C

Availability of raw material A:

F1A < 16 must be modified to include the possibility of not having Process 1
F1A < 16 y1 operating by incorporating binary integer variable y1

Availability of raw material B:

 F4B
 < 20 must be modified to include the possibility of only purchasing B

 F4B < 20 y4 by incorporating binary integer variable y4

Demand for product C:

F12C < 10 must be modified to include the possibility of only having Process 2 or 3
F8C < 10 y2 operating by incorporating binary integer variables y2 and y3

 F10C < 10 y3

Integer equations
 Integer equation forcing the selection of Process 1 or purchase of B
 y1 + y4 = 1

 Integer equation forcing the selection of either Process 2 or 3
 y2 + y3 = 1

 291

Combining the constraint equations with the economic model in the MILP format gives:

 operating cost fixed cost feed cost sales

max: -250F1A - 400F6B - 550 F7B - 1,000y1 - 1,500y2 - 2,000y3 -500 F1A - 950 F4B + 1,800 F12C

subject to: mass yields -0.90 F1A + F2B = 0
 -0.10 F1A + F3A = 0
 -0.82 F6B + F8C = 0
 -0.18 F6B + F9B = 0
 -0.95 F7B + F10C = 0
 -0.05 F7B + F11B = 0

 node MB F2B + F4B - F5B = 0
 F5B = F6B - F7B = 0
 F8C + F10C - F12C= 0

 availability of A F1A < 16 y1

 availability of B F4B < 20 y4

 demand for C F8C < 10 y2

 F10C < 10 y3

 integer constraints y2 + y3 = 1
 y1 + y4 = 1

 The optimal structure for the example was obtained using the GAMS program in Figure 6-
10. The start of the results is an echo print of the program as shown in Figure 6-10 that includes
defining binary and positive variables and the equations. This is followed by the equations for the
process model and the objective function. Statement on line 67 has the program use all of the
equations and on line 69 to maximize the PROFIT using the solver MIP. Then the results give a
status of the solution including: 1 normal completion, 1 optimum found and the value of the
objective function at the optimum. This is followed by values for the lower level, upper and
marginal values of the constraint equations. The marginal values are the values of the Lagrange
multipliers, the level values are for the inequality constraints, and “.” is used to indicate a zero
value. See the sensitivity analysis discussion in the linear programming chapter. This is followed
by values for the lower level, upper and marginal values of the variables. The variables in the
optimum basis will leave the basis if the upper and lower limits are exceeded, as discussed in the
section on sensitivity analysis in the linear programming chapter.

 292

 Figure 6-10 GAMS Program and Results for the Optimal Design Example

GAMS Program

Design of a Chemical Complex
 3 *filename: PROCESS.gms
 4 option optcr=0, limrow=0, limcol=0;
 5
 6 BINARY VARIABLES
 7 Y1 denotes selection of process 1 when equal to one
 8 Y2 denotes selection of process 2 when equal to one
 9 Y3 denotes selection of process3I when equal to one
 10 Y4 denotes selection of purchased B when equal to one;
 11
 12 POSITIVE VARIABLES
 13 F1A Flow rate of A to Process 1 (All flow rates in tons per hour) 
14 F2B Flow rate of B to either Process 2 or 3 if Process 1 selected
15 F3A Flow rate of unreacted A from process 1
16 F4B Flow rate of B purchased from a supplier if supplier selected
17 F5B Flow rate of B to either Process 2 or 3
18 F6B Flow rate of B to Process 2 if Process 2 selected
19 F7B Flow rate of B to Process 3 if process 3 selected
20 F8C Flow rate of C if Process 2 selected
21 F9B Flow rate of unreacted B if Process 2 selected
22 F10C Flow rate of C if Process 3 selected
23 F11B Flow rate of unreacted B if Process 3 is selected
24 F12C Flow rate of C to sales ;
25
26 VARIABLE PROFIT objective function ;
27
28 EQUATIONS
29 E1 conversion of B to C in Process 1
30 E2 unreacted A from mass balance on Process 1
31 E3 conversion of C in Process 2
32 E4 unreacted B from mass balance on Process 2
33 E5 conversion of B to C in Process 3
34 E6 unreacted B from mass balance on Process 3;
35 E7 material balance on node from Processes 1 and purchased B
36 E8 material balance on node to Processes 2 and 3
37 E9 material balance on node from processes 2 and 3 to sales
38 E10 availability of raw material
39 E11 demand for product if from Process 2
40 E12 demand for product if from Process 3
41 E13 integer constraint to select either Process 1 or purchase B
42 E14 integer constraint to select either process 2 or 3
43 OBJ objective function definition;

 293

44
45 E1 .. -0.90*F1A + F2B =E= 0 ;
46 E2 .. -0.10*F1A + F3A =E= 0 ;
47 E3 .. -0.82*F6B + F8C =E= 0 ;
48 E4 .. -0.18*F6B + F9B =E= 0 ;
49 E5 .. -0.95*F7B + F10C =E= 0 ;
50 E6 .. -0.05*F7B + F11B =E= 0 ;
51 E7 .. F2B + F4B - F5B =E= 0 ;
52 E8 .. F5B - F6B - F7B =E= 0 ;
53 E9 .. F8C + F10C- F12C =E=0 ;
54 E10.. F1A - 16*Y1 =L= 0 ;
55 E11.. F8C - 10*Y2 =L= 0 ;
56 E12.. F10C - 10*Y3 =L= 0 ;
57 E13.. Y1+ Y4 =L=1 ;
58 E14.. Y2+ Y3 =L=1 ;
59
60 * constraint for the maximum demand of product C
61 * is declared as an upper bound here
62 F12C.UP = 10 ;
63
64 OBJ .. PROFIT =E= -250*F1A - 400*F6B - 550*F7B - 1000*y1 -1500*y2
65 - 2000*y3 -500*F1A - 950*F4B +1800*F12C ;
66
67 MODEL PROCESS /ALL/ ;
68
69 SOLVE PROCESS USING MIP MAXIMIZING PROFIT ;

Printout of Results from the GAMS Program

COMPILATION TIME = 0.000 SECONDS 0.7 Mb WIN-18-097
Design of a Chemical Complex
Model Statistics SOLVE PROCESS USING MIP FROM LINE 69

MODEL STATISTICS

BLOCKS OF EQUATIONS 15 SINGLE EQUATIONS 15
BLOCKS OF VARIABLES 17 SINGLE VARIABLES 17
NON ZERO ELEMENTS 40 DISCRETE VARIABLES 4

GENERATION TIME = 0.000 SECONDS 1.4 Mb WIN-18-097
EXECUTION TIME = 0.000 SECONDS 1.4 Mb WIN-18-097

 SOLVE SUMMARY
 MODEL PROCESS OBJECTIVE PROFIT
 TYPE MIP DIRECTION MAXIMIZE
 SOLVER OSL FROM LINE 69

 294

**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 459.3496

 RESOURCE USAGE, LIMIT 0.160 1000.000
ITERATION COUNT, LIMIT 5 10000

OSL Version 1 Jul 4, 1999 WIN.OS.18.1 055.035.036.WAT OSL Version 1
Work space allocated -- 0.18 Mb

 LOWER LEVEL UPPER MARGINAL
---- EQU E1 . . . 833.333
---- EQU E2 . . . EPS
---- EQU E3 . . . 1504.065
---- EQU E4 . . . EPS
---- EQU E5 . . . 1456.140
---- EQU E6 . . . EPS
---- EQU E7 . . . -833.333
---- EQU E8 . . . -833.333
---- EQU E9 . . . -1656.140
---- EQU E10 -INF -2.450 . .
---- EQU E11 -INF . . 152.075
---- EQU E12 -INF . . 200.000
---- EQU E13 -INF 1.000 1.000 .
---- EQU E14 -INF 1.000 1.000 .
---- EQU OBJ . . . 1.000

 E1 conversion of B to C in Process 1
 E2 unreacted A from mass balance on Process 1
 E3 conversion of C in Process 2
 E4 unreacted B from mass balance on Process 2
 E5 conversion of B to C in Process 3
 E6 unreacted B from mass balance on Process 3;
 E7 material balance on node from Processes 1 and purchased B
 E8 material balance on node to Processes 2 and 3
 E9 material balance on node from processes 2 and 3 to sales
 E10 availability of raw material
 E11 demand for product if from Process 2
 E12 demand for product if from Process 3
 E13 integer constraint to select either Process 1 or purchase B
 E14 integer constraint to select either process 2 or 3
 OBJ objective function definition;

 295

 LOWER LEVEL UPPER MARGINAL
---- VAR Y1 . 1.000 1.000 -1000.000
---- VAR Y2 . 1.000 1.000 20.753
---- VAR Y3 . . 1.000 EPS
---- VAR Y4 . . 1.000 EPS
---- VAR F1A . 13.550 +INF .
---- VAR F2B . 12.195 +INF .
---- VAR F3A . 1.355 +INF .
---- VAR F4B . . +INF -116.667
---- VAR F5B . 12.195 +INF .
---- VAR F6B . 12.195 +INF .
---- VAR F7B . . +INF .
---- VAR F8C . 10.000 +INF .
---- VAR F9B . 2.195 +INF .
---- VAR F10C . . +INF .
---- VAR F11B . . +INF .
---- VAR F12C . 10.000 10.000 143.860
---- VAR PROFIT -INF 459.350 +INF .

Y1 denotes selection of process 1 when equal to one
Y2 denotes selection of process 2 when equal to one
Y3 denotes selection of process 3 when equal to one
Y4 denotes selection of purchased B when equal to one;
F1A Flow rate of A to Process 1 (All flow rates in tons per hour) 
F2B Flow rate of B to either Process 2 or 3 if Process 1 selected
F3A Flow rate of unreacted A from process 1
F4B Flow rate of B purchased from a supplier if supplier selected
F5B Flow rate of B to either Process 2 or 3
F6B Flow rate of B to Process 2 if Process 2 selected
F7B Flow rate of B to Process 3 if process 3 selected
F8C Flow rate of C if Process 2 selected
F9B Flow rate of unreacted B if Process 2 selected
F10C Flow rate of C if Process 3 selected
F11B Flow rate of unreacted B if Process 3 is selected
F12C Flow rate of C to sales;
PROFIT objective function

**** REPORT SUMMARY:
 0 NONOPT
 0 INFEASIBLE
 0 UNBOUNDED
EXECUTION TIME = 0.000 SECONDS 0.7 Mb WIN-18-097

 296

Computer Codes Available for Solving MILP Problems

 MILP models can be solved using a variety of computer codes. A few of which are
described here. The main frame mixed integer-programming solver that has been available for a
number of years is the IBM Mathematical Programming System Extended (MPSX/370) that
supports Mixed Integer Programming (MIP). Since this solver is a mainframe utility, it can handle
very large problems. The problem data is stored in MPS file format and a separate Control Program
is written to solve the problem. The detailed documentation is given in IBM manuals [9].

 GAMS (General Algebraic Modeling System) is a program for solving LP, MILP as well
as NLP and MINLP. This system was developed at the World Bank to solve very large economic
problems and extended by the GAMS Development Corporation in Washington D. C. GAMS is
a high-level language that makes concise algebraic statements of models and hence is easier to
understand and implement. Detailed documentation of GAMS is given in the GAMS manual [10].
One of the advantages of GAMS is that the computer code uses the same format as the
mathematical statement of the optimization problem.

 LINDO, LINGO and "What's Best!" by Lindo Systems Inc. solves both LP and MILP
problems. The formulation of models is straightforward, and the user has to list all the constraints
one by one. This gets tedious if the constraints in the model are expressed in the summation form
because, then each constraint will have to be separately written for the above three solvers.
Nevertheless, these solvers are very convenient to use for small problems.

MILP Approach in Batch Plant Scheduling

 Scheduling of batch plant operation is a very important application of mixed integer linear
programming according to Mah [8], and typically production rate of up to 25 million pounds per
year are done in batch plants. Products such as pharmaceuticals, fermentation products, paints,
plastics and food products are manufactured in batch processes.

 A batch plant may be used to produce a single product or multiple products using the same
set of equipment. Several products need the same processing steps that pass through the same
series of processing units, and these are called multiproduct plants. As batches of different products
require different processing times, the total time required to produce a set of batches depends on
the sequence in which they are produced. Hence, it is crucial to schedule the batch operations in
such a way so as to maximize plant productivity by minimizing the total time required to complete
the entire set of operations (called the makespan).

 Multiproduct batch plant scheduling problems can be solved using mixed integer linear
programming. Problems of this type can be considered to be consisting of two interlinked
subproblems. The first one is the determination of the order in which the products are to be
produced, and the second subproblem deals with the determination of the start and finish times of
each product on all processing units. The final plant schedule corresponding to a sequence is then
represented in the form of a Gantt chart [8].

 297

Optimal Multi-Batch Batch Scheduling

 As an example, the unit processing times for a 4-product, 3-stage flow shop are shown in
Table 6-1. The Gantt chart in Figure 6-9 shows one of the possible schedules for the sequence of
jobs. From this chart, we see that in Unit 1, there is a wait (holding) time of 5-unit times for
product 3. This is because Unit 2 is not yet ready to accept output from Unit 1. Therefore, Unit 1
has to hold product 3 until Unit 2 is ready to accept it. This holding time is shown by the shaded
area in the Gantt Chart. Similarly, product 2 in Unit 2 has to wait for 3-time units before Unit 3
becomes ready. The total time required (makespan) for this particular sequence is 27-time units.
This is just one of the possible job sequences, and it may be far from optimal. The formulation of
this kind of MILP problem involves representing the batch plant scheduling configurations in
terms of mathematical equations that are expressed below (8).

Table 6-1 Unit Processing Times for a Four Product, Three-Stage Flow Shop

 UNIT P1 P2 P3 P4
 1 5 3 2 5
 2 3 4 3 4
 3 7 2 7 3

P1

P1

P1

P2

P2

P2

P3

P3

P3

P4

P4

P4

Holding TimeProcessing Time

Unit 1

Unit 2

Unit 3

0 5 8 15 1
7

24 27

Figure 6-11 Gantt Chart for 4-Product, 3-Stage Flow Shop

1
0

12

Time Units

18

5

3 2

1

2
0

 298

 A description of this scheduling problem can be formulated as a MILP. Let N be the
number of products and M be the number of processing units or stages in a plant. As shown in the
Gantt Chart in Figure 6-11, a product i (i = 1..., N) can occupy only one slot j (j = 1..., N) in each
unit k (k = 1..., M). This can be expressed mathematically by defining a binary variable yij such
that:
 yij = 1, if product i is placed in slot j in the sequence (6-14)
 0, otherwise

The constraint that ensures that each product i is assigned to exactly one position j in the sequence
is given by:
 N
 yi1 + yi2 + yi3 + … + yiN = 1 or S yij = 1 for i = 1, …, N (6-15)
 j=1

Similarly, the constraint that ensures that each position in the product sequence is assigned to only
one product is given by:

 N
 y1j + y2j + y3j + … + yNj = 1 or S yij = 1 for j = 1, …, N (6-16)
 i=1
Let Cik be the completion time i.e., the time at which the ith product leaves unit k after completion
of its processing. Here, ith product means the product in slot i.

Let the processing time PTik be the time required to process the ith product in unit k. Now, the ith
product cannot leave unit k until it is processed and in order to get processed, it must have left unit
(k-1).

Thus, the completion time for product i in unit k i.e., Cik must be at least equal to its completion
time of unit (k-1) plus its processing time (PT) in unit k. This can be represented as:

 Cik ≥ Ci(k-1) + PTik, for i = 1,… N and k = 2 ... M (6-17a)

Equation 9-17a was formulated under the condition that there is at least one unit before unit k and
the limits of k are from 2 to M.

Similarly, ith product cannot leave unit k until (i - 1)th product has been processed, and the former
has been processed. Therefore,

 Cik ≥ C(i-1)k + PTik, for i = 1,… N and k = 1, M with C0k = 0 (6-17b)

Finally, the ith product can leave unit k only when unit (k +1) is free i.e., when the (i - 1)th
product in unit (k+1) has left. This can be represented as:

 Cik ≥ C(i-1)(k+1) for i = 1, … N; k = 1,… M (6-17c)

 299

From Equation 6-17(c), it implies that Ci(k-1) ≥ C(i-1)k (substituting k = k - 1) into Equation 9-17c.
Equations 6-17(a) and 6-17(c) imply 6-17(b) for k = 2, …M. Now:

 Cik ≥ Ci(k-1) + PTik ≥ C(i-1)k + PTik.

Therefore, Equation 6-17(b) for k = 2, …M are redundant, and Equation 6-17(c) is given for k =
1 only.

Let tik be the processing time for product i. Now, if product i is in slot j, then PTjk must be tik.
Also, for a given unit k, product i can be in only one slot. Thus, yij can be used to pick the right
processing time representing PTjk. This can be represented mathematically as:

 PTik = y1i t1k + y2i t2k + y3i t3k + … + yNi tNk

or
 N
 PTik = S yji tjk for i = 1, … N k = 2, … M (6-18)
 j=1

 (9-18)
Substituting Equation 6-18 into Equation 6-17a gives:

 N
 Cik ≥ Ci(k-1) + S yji tjk for i = 1, … N k = 2, … M (6-19)
 j=1

The MILP for the batch-scheduling problem is:

Minimize: CNM (6-20a)
 N
Subject to: Cik ≥ Ci(k-1) + S yji tjk for i = 1 … N k = 2 … M (6-20b)
 j=1
 N
 Ci1 ≥ C(i-1),1 + S yji tj1 for k = 2 … M (6-20c)
 j=1
 Cik ≥ C(i-1)(k+1) for i = 1, … N; k = 1, …M-1 (6-20d)

 N
 S yij = 1 for i = 1, …, N (6-20e)
 j=1

 N

 300

 S yij = 1 for j = 1, …, N (6-20f)
 i=1

 Cik ≥ 0, and yij binary

 These equations represent batch plant scheduling problems in which the objective is to find
the optimal scheduling sequence for various jobs in order to minimize the makespan, the
completion time CNM. Equation 6-15 ensures that each product i is assigned to exactly one position
j. Equation 6-16 ensures that each product sequence is assigned to only one product. Equation 6-
17a ensures that the completion time for product i in unit k, Cik, is greater than or equal to the
completion time of the prior units Ci(k-1) and the processing time of product i in unit k, PTik.
Equation 6-17b ensures that the completion time for product i in unit k, Cik, is greater than or equal
to the time for the product completion time product of (i - 1)th has and the processing time of
product i in unit k, PTik. These constraints describe the minimum completion times of processing
of a particular product i in slot j and unit k.

 Additional extensions of the batch processing MINLP by Mah (8) and Ku (14) include
limited intermediate storage, no intermediate storage, finite intermediate storage, mixed
intermediate storage, and zero weight. A systematic method for batch processing scheduling with
limited resources is described by Ku and Karimi (15). A review of continuous-time versus
discrete-time approaches for scheduling of chemical processes is given by Floudas and Lin (16)

 An example of a no intermediate storage problem given by Karimi in CACHE- Process
Design Case Studies, Vol. 6 (6) is described below. A GAMS program for the solution is given
in the CD with the Case Studies (6).

Example of a Multiproduct Batch Plant Scheduling Problem

A multiproduct plant wishes to produce four products (P1 - P4) in batches. Each product requires
three processing steps that are carried out by three batch units. The processing times of each
product for the three units is given in Table 9-2.

Table 9-2. Processing Times (hours) of products, after Karimi [6].

 Products
 Units P1 P2 P3 P4
 1 3.5 4.0 3.5 12.0
 2 4.3 5.5 7.5 3.5
 3 8.7 3.5 6.0 8.0

There is no storage facility is available between the processing units which means that unit 'k' has
to hold a product that it has processed until unit 'k+1' becomes free. However, products that have
been processed by the last unit are immediately sent to the storage unit.

A unit can begin processing a product immediately after it has finished processing the previous
product and has sent it to the next unit. Also, the time required to transfer products from one unit
to the next is negligible compared to the processing times.

 301

The units are ready to begin processing at time zero and the production of any product can begin
at any time. The objective is to find a sequence of producing the four products in order to minimize
the makespan.

For the MILP formulation, the total number of products is N = 4, and the number of processing
units is M=3 with binary variables (yij) and continuous variables (Cik).

The solution of this problem has been obtained using the GAMS program from the CD with the
Case Studies (6) that is given in Table 6-3. GAMS compilers users manuals and related
information are available on the GAMS web site, GAMS.com.

Table 6 -3. GAMS Program for the Batch Scheduling Problem, after Karimi [6].

$TITLE Multiproduct Batch Plant Scheduling
* Define product and unit index sets
SETS PI Product batches to be produced /p1*p4/
 UK Four batch processing units in the plant /u1*u3/
 J Slots for products in the sequence /1*4/;
ALIAS (I, J);
* Define and initialize problem data
TABLE T(PI,UK) Processing times of products on unit UK in hours
 u1 u2 u3
 p1 3.5 4.3 8.7
 p2 4.0 5.5 3.5
 p3 3.5 7.5 6.0
 p4 12.0 3.5 8.0
PARAMETER TMIN(UK) Minimum of the processing times of products on UK;
 TMIN(UK) = SMIN(PI, T(PI,UK));
PARAMETER TP(PI,UK) Processing times of products above TMIN on UK;
 TP(PI,UK) = T(PI,UK) - TMIN(UK);
SCALAR N Number of products to be produced
 M Number of units in the plant;
 N = CARD(PI);
 M = CARD(UK);
* Define optimization variables
VARIABLES X(PI,J) Product PI is in sequence slot J
 C(I,UK) Completion time of the product in sequence
 slot I on unit UK
 MSPAN Makespan or total time to produce all products;
POSITIVE VARIABLES C;
BINARY VARIABLES X;
* Define constraints and objective function
EQUATIONS OBJFUN Minimize makespan
 ONEPRODUCT(J) Only one product should be in each slot
 ONESLOT(PI) Only one slot should be assigned to each product

 302

 CEQ1(I,UK) Completion time recurrence 9-20c
 CEQ2(I,UK) Completion time recurrence 9-20b
 CEQ3(I,UK) Completion Time recurrence 9-20d;
OBJFUN.. MSPAN =E= SUM((I,UK) $(ORD(I) EQ N AND ORD(UK) EQ M), C(I,UK));
ONEPRODUCT(J).. SUM(PI, X(PI,J)) =E= 1;
ONESLOT(PI).. SUM(J, X(PI,J)) =E= 1;
CEQ1(I,"u1").. C(I,"u1") =G= C(I-1,"u1") $(ORD(I) GT 1) +
 TMIN("u1") + SUM(PI, TP(PI,"u1")*X(PI,I));
CEQ2(I,UK) $(ORD(UK) GT 1)..
 C(I,UK) =G= C(I,UK-1) + TMIN(UK) + SUM(PI, TP(PI,UK)*X(PI,I));
CEQ3(I,UK) $(ORD(I) GT 1 AND ORD(UK) LT M).. C(I,UK) =G= C(I-1,UK+1);
* Define model and solve
 MODEL SCHEDULE /ALL/;
 SOLVE SCHEDULE USING MIP MINIMIZING MSPAN;
DISPLAY X.L, C.L, MSPAN.L;

The first command in the GAMS program in Table 6-3 (also called the directive) is TITLE that
causes every page of the output solution to contain the title that has been specified with this
directive. For this example, the title is "Multiproduct Batch Plant Scheduling" and this would
appear on each page of the output solution. This directive is preceded by the '$' sign and hence
these are called the Dollar Control Directives. Such directives are put in the input file to control
the appearance and amount of detail in the output produced by the GAMS compiler. Also, any text
that follows the asterisk '*' is treated as a comment by the compiler and hence ignored. The entire
problem follows the GAMS model, the basic components of which are explained below.

SETS: These form the basic building block of a GAMS model and they correspond to the indices
in the algebraic representation of models. In the example problem, PI, UK and J are the indices for
the product batches, processing units and slots for products respectively. The values for these sets
are enclosed within the slashes. For example, for the SET J, the number of slots is four and hence
the number within the slashes are /1*4/ which is the concise way of writing, instead of writing /1,
2, 3, 4/. The next statement, ALIAS, is used to give another name to a previously declared set.

DATA: The next component of the GAMS model is DATA that consists of TABLES,

PARAMETERS AND SCALARS: In this component, all the input data is entered. Table 2 is
entered in the TABLE section with the name T(PI,UK). In the PARAMETERS section, T(PI,UK)
= TMIN(UK) + [T(PI,UK) - TMIN(UK)] where TMIN(UK) is the minimum processing times of
products on unit UK. This not only increases the sparsity of the formulation, but also reduces the
coefficients of the binary variables, thereby making the problem easier to solve (6). The SCALAR
statement is used for variables that can have only single values. The function CARD() returns an
integer value which corresponds to the number of elements in the set. The statement N =
CARD(PI) assigns the value 4 to N.

VARIABLES: This component consists of all the decision variables of the GAMS model. Once
the variables are declared, they must be assigned the type i.e. either POSITIVE, NEGATIVE,
INTEGER, BINARY or FREE. Here, 'C' is a positive variable and 'X' is a binary variable. The

 303

variable that represents the quantity to be optimized must be a scalar and must be of the FREE
type which means that the range of the variable is from -∞ to +∞.

EQUATIONS: This component of the GAMS model declares and defines all the equations of the
problem. All equations are first declared and then defined in separate statements. GAMS has
several notations to simplify complex equations. One of them is the summation notation which has
two arguments: SUM(index of summation, summand). The command ORD() gives the position of
an element in the set. The Dollar '$' operator is used for introducing specific conditions in the
equations. For example, X$(Y EQ 5) = 8 implies that the value 8 is assigned to X only if Y is equal
to the value 5. Such notations and commands are helpful to greatly simplify equations that are
complex.

MODEL: This statement means that it is a group of equations. The format of this statement is the
keyword MODEL followed by the model's name, followed by the list of equation names to be
considered and enclosed in slashes. If all equations are to be considered for the solution, then
"/ALL/" can be entered to represent the entire list of equations.

SOLVE: This statement is used to solve the model. The format sequence of the SOLVE statement
is as follows:
 1. The keyword "SOLVE".
 2. Model name.
 3. The keyword "USING".
 4. The solution procedure available, like "LP", "NLP", ”MIP", etc.,
 5. The keyword "MAXIMIZING" or "MINIMIZING".
 6. The name of the variable to be optimized.

DISPLAY: This final statement is used to display values of specific variables at the output.

A section of the output solution obtained by solving the input program on GAMS is shown in
Table 4. It gives the summary of the solution process. The minimum makespan obtained, which is
given by the objective value is 34.8 hours.

Table 6-4. GAMS Output for Optimal Solution to the Batch Plant Scheduling Problem from
Karimi[6].

Multiproduct Batch Plant Scheduling
Solution Report SOLVE SCHEDULE USING MIP FROM LINE 53
 S O L V E S U M M A R Y
 MODEL SCHEDULE OBJECTIVE MSPAN
 TYPE MIP DIRECTION MINIMIZE
 SOLVER ZOOM FROM LINE 53
**** SOLVER STATUS 1 NORMAL COMPLETION
**** MODEL STATUS 1 OPTIMAL
**** OBJECTIVE VALUE 34.8000
 RESOURCE USAGE, LIMIT 2.090 1000.000
 ITERATION COUNT, LIMIT 164 1000

 304

**** REPORT SUMMARY : 0 NONOPT
 0 INFEASIBLE
 0 UNBOUNDED

---- 55 VARIABLE X.L Product PI is in sequence slot J
 1 2 3 4
P1 1.000
P2 1.000
P3 1.000
P4 1.000
---- 55 VARIABLE C.L Completion time of the product in sequence
 U1 U2 U3
1 3.500 7.800 16.500
2 7.800 16.500 23.300
3 19.800 23.300 31.300
4 23.800 31.300 34.800
---- 55 VARIABLE MSPAN.L = 34.800 Makespan or total time to produce all products

The final values of the binary variables are listed in the form of a table that shows the job sequence.
Here, y11, y24, X32, and X43 have a value '1'. This means that product 1 has been allotted slot 1,
product 2 has been allotted slot 4, product 3 has been allotted slot 2 and product 4 has been allotted
slot 3. Thus, the final sequence in which the products will be produced to minimize the makespan
is P1-P3-P4-P2.

Next, the completion time for each process in each unit is listed. C43 is the makespan and is equal
to 34.8. From this table, the Gantt chart can be drawn. Finally, the value of the variable MSPAN
that corresponds to the makespan is given.

Closure

 In this chapter, mixed integer linear programming was described along with its special
cases. First, the mathematical structure of MILP was introduced and then some perspective was
given on solving integer-programming problems. The branch and bound technique for solving
mixed integer problems was then described along with an algorithm to solve general integer
problems using this technique. The use of this algorithm was illustrated by solving an example.
Later, a binary integer problem was solved in a similar but different way, but essentially using the
same technique. The purpose was to show that binary integer programming problems could be
solved by an efficient and faster method. Then mixed integer programming was introduced, and
a problem was solved using the branch and bound technique. Finally, the MILP approach in batch
plant scheduling was explained with the help of an example, and equations were derived to
formulate such problems. Finally, the chapter closed by applying these equations to construct a
mathematical model of a multiproduct batch plant scheduling problem whose solution was
obtained using GAMS. Both, the GAMS code and solution for the problem were discussed.

 305

References

1.Nemhauser, G. L., A. H. G. Rinnooy Kim and M. J. Todd, Optimization, Elsevier Science
Publications, New York (1989).

2. Ecker, J. G. and M. Kupferschmid, Introduction of Operations Research, Wiley, New York
(1988).

3. Ravindran, A., D. T. Phillips and J. J. Solberg, Operations Research; Principles and Practice,
Sec. Ed., Wiley, New York (1987).

4. Murtagh, B. A., Advanced Linear Programming: Computation and Practice, McGraw-Hill,
New York (1981).

5. Hiller, F. S. and Lieberman, G. J., Introduction to Operations Research, McGraw-Hill, New
York (1990).

6. Karimi, I. A., “Multiproduct Batch Plant Scheduling,” Chemical Engineering Optimization
Models with GAMS. CACHE Design Case Studies Series, Case Study No.6, Grossmann, I. E.,
Ed., CACHE Corporation, Austin, Texas (1991).

7. Murty, K. G., Linear and Combinatorial Programming, Wiley, New York (1976).

8. Mah, R. S. H., Chemical Process Structures and Information Flows, Buttersworth, Boston
(1990).

9. IBM Mathematical Programming System Extended/370 Primer, GH19-1091-1, 2nd Ed., IBM
Corp., White Plains, New York. (1979).

10. Brooke, A., Kendrik, D., and Meeraus, A., GAMS: A User's Guide, The Scientific Press,
Redwood City, CA (1988).

11. The Operations Research Problem Solver, Research and Education Association, New York
(1983).

12. McMillan, Claude Jr., Mathematical Programming: An Introduction to the Design and
Application of Optimal Decision Machines, Wiley, New York (1970).

13. Harley, R., Linear and Nonlinear Programming, Wiley, p. 162f, (1985).

14. Ku, H-M and I. A. Karimi, 1988, “Scheduling in Serial Multiproduct Batch Processes with
Finite Interstage Storage: A Mixed Integer Linear Program Formulation,” Industrial Engineering
Chemistry Research, Vol. 27, p.1840

 306

15. Ku, H-M and I. A. Karimi, 1990, “Completion Time Algorithm for Serial Multiproduct
Batch Processes with Shared Storage, Computers and Chemical Engineering, Vol. 14, No. 1, p.
49

16. Floudas, C. A. and X. Lin, 2004, “Continuous-time versus Discrete-Time Approaches for
Scheduling of Chemical Processes: a Review,” Computers and Chemical Engineering, Vol. 28,
p. 2109

17. Gass, S. I., Linear Programming: Methods and Applications, 5th Ed., McGraw-Hill, New
York, (1985).

18. Wolsey, L. A. Integer Programming, Wiley, p. 95, (1998).

19. Floudas, C. A., Nonlinear and Mixed-Integer Optimization, p. 235f, Oxford University
Press, Oxford, England (1995)

 307

Problems

6-1. During the maximization of the following integer programming problem after S. I. Gass
(17), the following subsets were obtained.
 maximize: P(x) = 2x1 + 5x2
 subject to: 2x1 - x2 ≤ 9
 2x1 + 8x2 ≤ 31
 xj ≥ 0 and integer
Subsets (not in order)
x1 ≤ 5, x2 ≤ 2 x = (5, 2) P = 20
x1 ≤ 5, x2 ≥ 0 x = (5, 2.625) P = 23.125
x1 ≥ 0, x2 ≥ 0 x = (5.722, 2.44) P = 23.66
x1 ≥ 6, x2 ≥ 0 Infeasible P = -
x1 ≤ 5, x2 ≥ 3 x = (3.5, 3) P = 22

 Start LP Relaxation Solution
 P = ___________
 x = (_____, _____)

 _____________________|_____________________
 | |

 x1 < _______ x1 > _______
 P = _______ P = _______
 x = (_____, _____) x = (_____, _____)

 |
 __
 | |

 x1 < _______ x1 < _______
 x2 < _______ x2 > _______
 P = _______ P = _______
 x = (_____, _____) x = (_____, _____)

a. Place the subset solutions on the branch and bound tree given above.
b. Write on the diagram all nodes that have been fathomed and explain why.
c. Write on the diagram the node that has not been fathomed and explain why.
d. Give the upper and lower bounds at this point in the solution.

 308

6-2. Consider the following integer programming problem after Wolsey (18).

 Max: 4x1 - x2 = P
 Subject to: 7x1 - 2x2 < 14
 2x1 - 2x2 < 3
 x2 < 3
 x1, x2 > 0 integers

The above integer-programming problem was solved using the branch and bound algorithm. The
constraints and the LP relaxation solution of all of the subproblems on the branches are listed
below.

 Constraints LP Solution for Subproblems
 x2 < 3 x = (2 6/7, 3) P= 8 3/7 LP relaxation solution
 x1 < 2 x2 < 3 x2 > 1 x = (2, 1) P= 7
 x1 < 2 x2 < 3 x = (2, 1/2) P= 7 1/2
 x1 < 2 x2 < 3 x2 < 0 x = (1 ½, 0) P= 6
 x1 > 3 x2 < 3 x = (infeasible) P= -

a. From the LP solutions of the subproblems given in the table below, complete the branch and
bound tree. Add subscripts to the x’s and values used for branching to each subproblem on the
attached diagram. All of the places for subproblems are not needed.

b. Write on the diagram the reasons for fathoming each subproblem.

c. Describe the procedure to locate and give the upper and lower bounds using a breadth-first
strategy.

 Start LP Relaxation Solution
 P= 8 3/7
 x = (2 6/7, 3)

_____________________|_____________________
| |

 x < x >
 P = P =
 x = () x = ()
 | |
 __________________ __________________
 | | | |

 x < x < x > x >
 x < x > x < x >
 P = P = P = P =
 x = () x = () x = () x = ()

 309

6-3. Consider the following integer programming problem after Harley (13).

 Max: 3x1 + 4x2 + 7x3 = P
 Subject to: x1 + 3x2 + 6x3 < 13
 2x1 + 3x2 + 4x3 < 13
 x1, x2, x3 > 0 integer

The above integer-programming problem was solved using the branch and bound algorithm. The
constraints and the LP relaxation solution of all of the subproblems on the branches are listed
below.

a. From the given LP solutions of the subproblems, complete the branch and bound tree and
write the constraints added to each subproblem on the attached diagram.

b. Give the reasons for fathoming each subproblem. Write this on the diagram.

c. Describe the procedure to locate and give the upper and lower bounds at each branch using a
breadth-first strategy and to locate the maximum.

 Constraints LP Solution for Subproblems
 x1 > 0 x2 > 0 x3 > 0 x = (31/4, 0, 15/8) P= 211/8 LP relax soln
3 > x1 > 0 x2 > 0 x3 > 0 x = (3, 1/3, 11/2) P= 205/6
3 > x1 > 0 x2 > 0 1 > x3 > 0 x = (3, 1, 1) P= 20
3 > x1 > 0 x2 > 0 x3 > 2 x = (1, 0, 2) P= 17
 x1 > 4 x2 > 0 x3 > 0 x = (4, 0, 11/4) P= 203/4
 x1 > 4 x2 > 0 1 > x3 > 0 x = (41/2, 0, 0) P= 201/2
 x1 > 4 x2 > 0 x3 > 2 x = (infeasible) --
4 > x1 > 4 x2 > 0 1 > x3 > 0 x = (4, 1/3, 1) P= 201/3
4 > x1 > 4 > 0 x2 > 0 1 > x3 > 0 x = (4, 0, 1) P= 19
4 > x1 > 4 x2 > 1 1 > x3 > 0 x = (4, 1, 1/2) P= 191/2
 x1 > 5 x2 > 0 1 > x3 > 0 x = (5, 0, 3/4) P= 201/2
 x1 > 5 x2 > 0 0 > x3 > 0 x = (61/2, 0, 0) P= 191/2
 x1 > 5 x2 > 0 1 > x3 > 1 x = (infeasible) --

 310

 Start LP Relaxation Solution
 P = 21 1/8
 x = (3 1/4, 0, 1 5/8)
 _____________________|_____________________
 | |

 x1 < 3 x1 > 4
 P = P =
 x = () x = ()
___________|_____________ ____________|____________
| | | |
 x x x x
P = P = P = P =
x = () x = () x = () x = ()

 ________________|____________________
 | |
 x x
 P = P =
 x = () x = ()
 _______|___________ ____________|______
 | | | |
 x x x x
 P = P = P = P =
 x = () x = () x = () x = ()

 ZU upper bound ZL lower bound
Start
1st Branch
2nd Branch
3rd Branch
4th Branch
Maximum: P = x = (, ,)

6-4. Consider the following integer programming problem that has three binary variables, y1, y2,
and y3.

 Max: 3y1 + 2y2 + 3y3 = P
 Subject to: y1 + y2 + y3 > 2
 5y1 + 3y2 + 4y3 < 10
 y1, y2, y3 = 0,1

This problem was solved using the branch and bound algorithm. The LP relaxation solution and
subproblems formed from this solution by adding constraints are given in the following table.
These solutions are not in any particular order.

 311

 Constraints added Subproblem Solutions
 for subsets y1 y2 y3 P
 LP relaxation 0.6 1 1 6.8
 y1 = 1, y2 = 0 1 0 1 6
 y1 = 1, y2 = 1 y3 = 0 1 1 0 5
 y1 = 1, y2 = 1 1 1 0.5 6.5
 y1 = 1 1 0.33 1 6.67
 y1 = 1, y2 = 1, y3 = 1 1 1 1 infeasible
 y1 = 0 0 1 1 5

a. Write the LP relaxation and subset solutions on the attached branch and bound diagram.

b. Write on the diagram the reason that each node is fathomed.

c. Give the upper and lower bounds at each level, and show that this locates the maximum.

Start LP relaxation
ZU = ______ P = ______
ZL = _____ y1 = ____ y2 = ____ y3 = ____
 _____________________|_____________________
 | |

ZU = ______ y = ____ y = ____ add subscripts to y’s
ZL = _____ P = ____ P = ____
 y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____
 fathomed ________________
 _______________________________|___________
 | |
ZU = ______ y = ____ y = ____ add subscripts to y’s
ZL = _____ y = ____ y = ____
 P = ____ P = ____
 y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____
 fathomed _______________
 _______________________________|__________
 | |
ZU = ______ y = ____ y = ____ add subscripts to y’s
ZL = _____ y = ____ y = ____
 y = ____ y = ____
 P = ____ P = ____
 y1 = ____ y2 = ____ y3 = ____ y1 = ____ y2 = ____ y3 = ____
 fathomed _______________ fathomed _______________

 312

6-5.[3] During the maximization of a pure integer programming problem by the branch and
bound algorithm, the following branch and bound tree is obtained at a certain stage.

LP1
z = 100 (C.S)

┌────────────────────┐
LP2 LP3

 z = 85 (C.S) z = 91 (C.S)
┌──────────────┐ ┌────────────┐

 LP6 LP7 LP4 LP5
 z = 70 (I.S) z = 79 (C.S) z = 60 (I.S) z = 75 (C.S)

┌─────────────────┐
LP8 LP9

Infeasible solution z = 65 (C.S)

Note: C.S = continuous solution, I.S = Integer solution.

a. What is the best upper bound on the maximum value of z for the integer program at this
stage?
b. What is the best lower bound on the maximum value of z?
c. Indicate all the node(s) that have been fathomed and explain why.
d. Identify the node(s) that have not been fathomed and explain why not.
e. Has an optimal solution to the integer program been obtained at this stage? Explain.
f. What is the maximum absolute error on the optimal value of z if the branch and bound
algorithm is terminated at this stage? What is the fractional error as a percentage of worst-case
optimum?

6-6. Several integer-programming problems are given below. The branch and bound solutions
are given in References 2,5, and 11.

 Maximize: z(x) = 3x1 + 13x2
 Subject to: 2x1 + 9x2 ≤ 40
 11x1 - 8x2 ≤ 82
 x1, x2, non-negative integers

 Maximize: z(x) = 6x1 + 3x2 + x3 + 2x4
 Subject to: x1 + x2 + x3 + x4 ≤ 8
 2x1 + x2 + 3x3 ≤ 12
 5x2 + x3 + 3x4 ≤ 6
 x1 ≤ 1, x2 ≤ 1, x3 ≤ 4, x4 ≤ 2
 x1, x2, x3, x4 non-negative integers.

 Maximize: z(x) = 10x + 20y
 Subject to: 5x + 8y ≤ 60
 x ≤ 8, y ≤ 4
 x, continuous variable y, non-negative integers.
 The LP-relaxation of this problem is x = 5.6, y = 4 with z = 136.

 313

 Minimize: z(x) = x1 - 2x2
 Subject to: 2x1 + x2 ≤ 5
 -4x1 + 4x2 ≤ 5
 x1, x2, non-negative integers.

 Minimize: z(x) = 8x1 + 15x2
 Subject to: 10x1 + 21x2 ≤ 156
 2x1 + x2 ≤ 22
 x1, x2, non-negative integers.

 Maximize: z(x) = -x1 + 15x2
 Subject to: -x1 + 10x2 ≤ 10
 x1 + x2 ≤ 6
 x1, x2, non-negative integers.

 Maximize: z(x) = 9x1 + 6x2 + 5x3
 Subject to: 2x1 + 3x2 + 7x3 ≤ 35/2
 4x1 + 9x3 ≤ 15
 x1, x2, x3, non-negative integers.

 Maximize: z(x) = 2x1 + 3x2 + x3 + 2x4
 Subject to: 5x1 + 2x2 + x3 + x4 ≤ 15
 2x1 + 6x2 + 10x3 + 8x4 ≤ 60
 x1 + x2 + x3 + x4 ≤ 8
 2x1 + 2x2 + 3x3 + 3x4 ≤ 16
 x1 ≤ 3, x2 ≤ 7, x3 ≤ 5, x4 ≤ 5
 x1, x2, x3, x4 non-negative integers.

 Minimize: z(x) = -2x1 - 10x2 - x3
 Subject to: 5x1 + 2x2 + x3 ≤ 7
 2x1 + x2 + 7x3 ≤ 9
 x1 + 3x2 + 2x3 ≤ 5
 xj = 0 or 1, j = 1...,3.

 Minimize: z(x) = 2x1 + 4x2 - 5x3 + 7x4
 Subject to: x1 + 2x2 + 3x3 + 3x4 ≤ 8
 -2x1 + 3x2 + x3 + 2x4 ≥ 2
 xj = 0 or 1, j = 1...,4.

 Minimize: z(x) = -2x1 - 4x2 - 6x3 - 8x4
 Subject to: x1 + 2x2 - x3 + x4 ≤ 5
 -2x1 + x2 + x3 ≥ 2
 xj = 0 or 1, j = 1,..4.

 Minimize: z(x) = 2x1 + 3x2 - 4x3 + 7x4

 314

 Subject to: x1 - 2x2 + x3 - 4x4 ≥ 1
 x1 - 2x2 + 2x3 - x4 ≤ 1
 xj = 0 or 1, j = 1,..,4.

 Maximize: z(x) = 9x1 + 6x2 + 5x3
 Subject to: 2x1 + 3x2 + 7x3 ≤ 35/2
 4x1 + 9x3 ≤ 15
 x1 ≥ 0 and integer

 Maximize: z(x) = 4x1 - 2x2 + 7x3 - x4
 Subject to: -x1 + 2x3 - 2x4 ≤ 3
 x1 + x2 - x3 ≤ 1
 6x1 - 5x2 ≤ 0
 x1 + 5x3 ≤ 10
 xj ≥ 0 for j = 1,..,4.
 xj is an integer for j = 1, 2, 3.

6-7. (11) A hiker decides to go on a camping trip, and he does not wish to carry more than 60
pounds in his pack, but on laying out his equipment he finds its total weight to be 90 pounds.
There are three objects he wants to take, so in order to decide which combination is best, he
attaches a value to each so that he can take those objects which amounts to a maximum value.
Suppose his data are:
 Object Value Weight Value/Weight
 1 70 40 1.75
 2 50 30 1.67
 3 30 20 1.5
As seen in the data, he has listed the objects in order of decreasing value-to-weight ratio.
Formulate an integer-programming model to solve this problem. What is the solution by
applying the largest-ratio rule?

6-8. (12) Seventy-five hundred soldiers are to be transported across the Mediterranean sea.
The army has hired the services of a shipping company that owns two types of ships. The
attributes for the two ships are shown below:
 Type 1 Type 2
 Capacity, in soldiers 2,000 1,000
 Gallons fuel consumption/trip 12,000 7,000
 Crew size, in men 250 100

Only 55,000 gallons of fuel and 900 crewmen are available. The army will pay the shipping
company $20,000 for each ship of Type 1 employed and $10,000 for each ship of Type 2
employed.

Formulate the problem as an integer-programming problem if the objective is to maximize the
revenue without violating the fuel and crew constraints? Assume that the shipping company has
an ample supply of both types of ships.

 315

Repeat the problem with the addition of the following constraints:

 If any Type 2 ships are to be employed, a special cost of $2,000 is incurred, but not otherwise.

 If more than two Type 2 ships are employed, an additional cost of $1000 will be incurred since
 some schedule changes will become necessary.

6-9. (3) It is required to produce 2000 units of a certain product on three different machines. The
set-up costs, the production costs per unit, and the maximum production capacity for each
machine are given below:

Machine Set-up Cost($) Machine Capacity Production Cost
 1 $100 600 units $10 per unit for the first 300 units
 $7 per unit for the remaining 300 units

2 $500 800 units $2 per unit for all 800 units

3 $300 1200 units $6 per unit for the first 500 units
 $4 per unit for the remaining 700
 units

Formulate the problem as an integer-programming problem if the objective is to minimize the
total cost of producing the required lot.

6-10. (12) Three ships are to be unloaded at a certain dock in which four berths are available.
The time required for unloading (in days) depends on the ship's cargoes and the unloading
facilities at each berth. This data showing the days of unloading time is shown below:

 Ship 1 2 3
 Berth
 1 5 13 19
 2 13 10 15
 3 11 15 27
 4 15 9 6

Formulate the integer problem to find the optimal assignment of ships to berths so as to minimize
the total ship-days of unloading time.

 316

6-11. (12) There are three warehouses A, B, and C from which supplies have to be shipped to
four distributors D, E, F, and G. The various specifications are given below:
 Data:
 Supplies available:
 A: 36
 B: 28
 C: 16
 Distributor requirements:
 D: 5
 E: 10
 F: 35
 G: 25
 The unit shipping costs from the warehouse to the distributors:
 D E F G
 A $5 $9 $5 $7
 B 6 8 5 10
 C 7 9 13 5

Formulate the problem as an integer-programming problem to find an optimal distribution that
minimizes the total transportation cost, satisfies the distributor's needs and does not exceed the
warehouse's supply.

Solutions to Selected Problems

6-1 Solution

 Start LP Relaxation Solution
 P = 23.66
 x = (5.72, 2.44)
 _____________________|_____________________
 | |
 x1 < 5 x1 > 6
 P = 23.125 P = -
 x = (5, 2.625) x = (-, -)
 Fathomed – infeasible
 |
 __
 | |

 x1 < 5 x1 < 5
 x2 < 2 x2 > 3
 P = 20 P = 22
 x = (5, 2) x = (3.5, 3)
 Fathomed - integer solution Not fathomed - profit greater
 that lower bound
 Upper bound 22 Lower bound 20

 317

6-2 Solution

a. From the given LP solutions of the subproblems, complete the branch and bound tree.

 Start LP Relaxation Solution
 P= 8 3/7
 x = (2 6/7, 3)

_____________________|_______________
| |

 x1 < 2 x1 > 3 Branch on x1
 P = 7 1/2 P = - x1 < 2
 x = (2, 1/2) x = (infeasible) x1 > 3

 ___________|_________________________
 | |
 x1 < 2 x1 < 2 Branch on x2
 x2 < 0 x2 < 1 x2 > 1
 P = 6 P = 7 x2 < 0
 x = (1½, 0) x = (2, 1)
 Less than integer soln Integer soln - maximum

b. Reasons for fathoming each subproblem is on diagram.

c. Describe the procedure to locate and give the upper and lower bounds using a breadth-first
strategy.
 Zu ZL
Start 8 3/7 0
1st Branch 7 1/2 0
2nd Branch 7 7 upper bound Zu = lower bound ZL
Maximum is: P = 7, x = (2, 1)

The method has to proceed through two branches. At the second level the values of P for the
non-integer solution, P = 6, is less than the incumbent solution, P = 7.

 318

6-3 Solution

 Start
 x = (3 1/4, 0, 1 5/8) LP Relaxation Solution
 P = 21 1/8

 _____________________|_____________________
 | |

 x1 < 3 x1 > 4
 P = 20 5/6 P = 20 3/4
 x = (3, 1/3, 1 1/2) x = (4, 0, 1 1/4)

 ___________|_____________ ____________|____________
 | | | |
 x3 < 1 x3 > 2 x3 < 1 x3 > 2
 P = 20 P = 17 P = 20 1/2 P = -
 x = (3, 1, 1) x = (1, 0, 2) x = (4 ½, 0, 0) x =(infeasible)
 integer solution integer solution infeasible

 _____________________|_____________________
 | |
 x1 < 4 x1 > 5
 P = 20 1/3 P = 20 1/2
 x = (4, 1/3, 1) x = (5, 0, 3/4)
 _______|___________ ____________|______
 | | | |
 x2 < 0 x2 > 1 x3 < 0 x3 > 1
 P = 19 P = 19 1/2 P = 19 1/2 P = -
 x = (4, 0, 1) x = (4, 1, 1/2) x = (6 ½, 0, 0) x =(infeasible)

less than lower bound less than lower bound less than lower bound Infeasible

 ZU ZL
Start 21 1/8 0
1st Branch 20 5/6 0
2nd Branch 20 1/2 20
3rd Branch 20 1/2 20
4th Branch 20 20
Maximum is: P = 20 x = (3, 1, 1)

The method has to proceed through four branches. At the third level, values of P for non-integer
solutions are greater than the incumbent solution for P = 20.

 319

6-4 Solution

Start LP relaxation

ZU = 6.8 P = 6.8
ZL = 0 y1 = 0.6 y2 = 1 y3 = 1
 _____________________|_____________________
 | |
ZU = 6.67 y1 = 0 y1 = 1
ZL = 5 P = 5 P = 6.67
 y1 = 0 y2 = 1 y3 = 1 y1 = 1 y2 = 0.33 y3 = 1
 fathomed: integer solution

 ______________________________|____________
 | |
ZU = 6.5 y1 = 1 y1 = 1
ZL = 6 y2 = 0 y2 = 1
 P = 6 P = 6.5
 y1 = 1 y2 = 0 y3 = 1 y1 = 1 y2 = 1 y3 = 0.5
 fathomed: integer solution
 optimal solution
 ______________________________|____________
 | |
ZU = 6 y1 = 1 y1 = 1
ZL = 6 y2 = 1 y2 = 1
 y3 = 0 y3 = 1
 P = 5 P = -
 y1 = 1 y2 = 1 y3 = 0 y1 = - y2 = - y3 = -
 fathomed: integer solution fathomed: infeasible

 320

6-5 Solution

During the maximization of a pure integer-programming problem by the branch and bound
algorithm, the following branch and bound tree is obtained at a certain stage.

LP1
P = 100 (C.S)

┌────────────────────┐
LP2 LP3

P = 85 (C.S) P = 91 (C.S)
 ┌──────────────┐ ┌────────────┐

LP6 LP7 LP4 LP5
 P = 70 (I.S) P = 79 (C.S) P = 60 (I.S) P = 75 (C.S)
 integer solution not fathomed fathomed greater than

fathomed lower bound
 ┌─────────────────┐

 LP8 LP9
 infeasible solution P = 65 (C.S)
 fathomed continuous solution

 less than lower bound
 fathomed
Note: C.S = continuous solution, I.S = Integer solution.
a. The upper bound on the maximum value of P for the integer program at this stage is 75.
b. The lower bound on the maximum value of P is 70.
c. Nodes fathomed are:
 LP6 P = 70 integer solution.
 LP4 P = 60 integer solution
 LP8 P = 60 infeasible solution
 LP9 P = 65 continuous solution less than lower bound.
d. Node not fathomed is LP5 P = 75 continuous solution greater than lower bound
e. The optimal solution to the integer program has not been obtained at this stage. The optimal
solution may be larger than P = 70 by branching on LP5 P = 75.
f. The bounds on the optimal value for P at this stage, i.e., 75 > Popt >

